Ten problems and solutions when predicting individual outcome from lesion site after stroke

In this paper, we consider solutions to ten of the challenges faced when trying to predict an individual's functional outcome after stroke on the basis of lesion site. A primary goal is to find lesion-outcome associations that are consistently observed in large populations of stroke patients be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2017-01, Vol.145 (Pt B), p.200-208
Hauptverfasser: Price, Cathy J., Hope, Thomas M., Seghier, Mohamed L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider solutions to ten of the challenges faced when trying to predict an individual's functional outcome after stroke on the basis of lesion site. A primary goal is to find lesion-outcome associations that are consistently observed in large populations of stroke patients because consistent associations maximise confidence in future individualised predictions. To understand and control multiple sources of inter-patient variability, we need to systematically investigate each contributing factor and how each factor depends on other factors. This requires very large cohorts of patients, who differ from one another in typical and measurable ways, including lesion site, lesion size, functional outcome and time post stroke (weeks to decades). These multivariate investigations are complex, particularly when the contributions of different variables interact with one another. Machine learning algorithms can help to identify the most influential variables and indicate dependencies between different factors. Multivariate lesion analyses are needed to understand how the effect of damage to one brain region depends on damage or preservation in other brain regions. Such data-led investigations can reveal predictive relationships between lesion site and outcome. However, to understand and improve the predictions we need explanatory models of the neural networks and degenerate pathways that support functions of interest. This will entail integrating the results of lesion analyses with those from functional imaging (fMRI, MEG), transcranial magnetic stimulation (TMS) and diffusor tensor imaging (DTI) studies of healthy participants and patients.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2016.08.006