Metabolite Profiling of Preneoplastic and Neoplastic Lesions of Oral Cavity Tissue Samples Revealed a Biomarker Pattern
Oral cancer is a major health challenge in the Indian subcontinent and a dreadful form of cancers worldwide. The current study is focused on the identification of distinguished metabolites of oral cancer tissue samples in comparison with precancerous and control tissue samples using gas chromatograp...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-12, Vol.6 (1), p.38985-38985, Article 38985 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oral cancer is a major health challenge in the Indian subcontinent and a dreadful form of cancers worldwide. The current study is focused on the identification of distinguished metabolites of oral cancer tissue samples in comparison with precancerous and control tissue samples using gas chromatography coupled with triple quadrupole tandem mass spectrometry and chemometric analyses. Metabolites obtained were identified through National Institute of Standards and Technology (NIST) mass spectral (Wiley registry) library. Mass Profiler Professional (MPP) software was used for the alignment and for all the statistical analysis. 31 compounds out of 735 found distinguishing among oral cancer, precancerous and control group samples using
p-
value ≤ 0.05. Partial Least Square Discriminant Analysis (PLSDA) model was generated using statistically significant metabolites gave an overall accuracy of 90.2%. Down-regulated amino acid levels appear to be the result of enhanced energy metabolism or up-regulation of the appropriate biosynthetic pathways, and required cell proliferation in cancer tissues. These results suggest that tissue metabolic profiles have great potential in detecting oral cancer and may aid in understanding its underlying mechanisms. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep38985 |