Caveolin-1 Deletion Prevents Hypertensive Vascular Remodeling Induced by Angiotensin II
It has been proposed that membrane microdomains, caveolae, in vascular cells are critical for signal transduction and downstream functions induced by angiotensin II (AngII). We have tested our hypothesis that caveolin-1 (Cav1), a major structural protein of vascular caveolae, plays a critical role i...
Gespeichert in:
Veröffentlicht in: | Hypertension (Dallas, Tex. 1979) Tex. 1979), 2017-01, Vol.69 (1), p.79-86 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been proposed that membrane microdomains, caveolae, in vascular cells are critical for signal transduction and downstream functions induced by angiotensin II (AngII). We have tested our hypothesis that caveolin-1 (Cav1), a major structural protein of vascular caveolae, plays a critical role in the development of vascular remodeling by AngII via regulation of epidermal growth factor receptor and vascular endothelial adhesion molecule-1. Cav1 and control Cav mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension. On AngII infusion, histological assessments demonstrated medial hypertrophy and perivascular fibrosis of aorta and coronary and renal arteries in Cav1 mice compared with sham-operated Cav1 mice. AngII-infused Cav1 mice also showed a phenotype of cardiac hypertrophy with increased heart weight to body weight ratio compared with control Cav1 mice. In contrast, Cav1 mice infused with AngII showed attenuation of vascular remodeling but not cardiac hypertrophy. Similar levels of AngII-induced hypertension were found in both Cav1 and Cav1 mice as assessed by telemetry. In Cav1 mice, AngII enhanced tyrosine-phosphorylated epidermal growth factor receptor staining in the aorta, which was attenuated in Cav1 mice infused with AngII. Enhanced Cav1 and vascular endothelial adhesion molecule-1 expression was also observed in aorta from AngII-infused Cav1 mice but not in Cav1 aorta. Experiments with vascular cells further provided a potential mechanism for our in vivo findings. These data suggest that Cav1, and presumably caveolae, in vascular smooth muscle and the endothelium plays a critical role in vascular remodeling and inflammation independent of blood pressure or cardiac hypertrophy regulation. |
---|---|
ISSN: | 0194-911X 1524-4563 |
DOI: | 10.1161/HYPERTENSIONAHA.116.08278 |