Combinatorial refinement of thin-film microstructure, properties and process conditions: iterative nanoscale search for self-assembled TiAlN nanolamellae

Because of the tremendous variability of crystallite sizes and shapes in nanomaterials, it is challenging to assess the corresponding size–property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2016-12, Vol.49 (6), p.2217-2225
Hauptverfasser: Zalesak, J., Todt, J., Pitonak, R., Köpf, A., Weißenbacher, R., Sartory, B., Burghammer, M., Daniel, R., Keckes, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of the tremendous variability of crystallite sizes and shapes in nanomaterials, it is challenging to assess the corresponding size–property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self‐organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross‐sectional synchrotron X‐ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients. The results indicate the formation of self‐organized hexagonal–cubic and cubic–cubic nanolamellae with varying compositions and thicknesses in the range of ∼3–15 nm across the film thicknesses, depending on the actual composition of the reactive gas mixtures. On the basis of the occurrence of the nanolamellae and their correlation with the local film hardness, progressively narrower ranges of the composition and hardness were refined in three steps. The third film was produced using an AlCl3/TiCl4 precursor ratio of ∼1.9, resulting in the formation of an optimized lamellar microstructure with ∼1.3 nm thick cubic Ti(Al)N and ∼12 nm thick cubic Al(Ti)N nanolamellae which exhibits a maximal hardness of ∼36 GPa and an indentation modulus of ∼522 GPa. The presented approach of an iterative nanoscale search based on the application of cross‐sectional synchrotron X‐ray nanodiffraction and cross‐sectional nanoindentation allows one to refine the relationship between (i) varying deposition conditions, (ii) gradients of microstructure and (iii) gradients of mechanical properties in nanostructured materials prepared as thin films. This is done in a combinatorial way in order to screen a wide range of deposition conditions, while identifying those that result in the formation of a particular microstructure with optimized functional attributes. A novel iterative combinatorial nanoscale search based on the application of cross‐sectional synchrotron X‐ray nanodiffraction and cross‐sectional nanoindentation is used to refine the relationship between deposition conditions, microstructure and properties of nanostructured TiAlN thin films. Using three iterative steps, a nanolamellar TiAlN thin film with a maximal hardness of ∼3
ISSN:1600-5767
0021-8898
1600-5767
DOI:10.1107/S1600576716017258