The vascular clock system generates the intrinsic circadian rhythm of vascular contractility

Many of the cardiovascular parameters or incidences of coronary artery diseases display circadian variations. These day/night time variances may be attributable to the diurnal change in vascular contractility. However, the molecular mechanism of the vascular clock system which generates the circadia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Smooth Muscle Research 2015, Vol.51, pp.95-106
1. Verfasser: Saito, Toshiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many of the cardiovascular parameters or incidences of coronary artery diseases display circadian variations. These day/night time variances may be attributable to the diurnal change in vascular contractility. However, the molecular mechanism of the vascular clock system which generates the circadian variation of vascular contractility has remained largely unknown. Recently we found the existence of the intrinsic circadian rhythm in vascular contractility. A clock gene Rorα in vascular smooth muscle cells (VSMC) provokes the diurnal oscillatory change in the expression of Rho-associated kinase 2 (ROCK2), which induces the time-of-day-dependent variation in the agonist-induced phosphorylation of myosin light chain (MLC) and myofilament Ca2+ sensitization. In this review, we introduce our recent findings with reference to the molecular basis of the biological clock system and the current literature concerning cardiovascular chronobiology.
ISSN:0916-8737
1884-8796
DOI:10.1540/jsmr.51.95