Influence of biological scaffold regulation on the proliferation of chondrocytes and the repair of articular cartilage

To investigate the effects of hard tissue engineering scaffold (the material is β-TCP) with different micro-structures on the proliferation of chondrocytes, and the influence of its composite erythrocytes on the repair of articular cartilage defects. Rabbit cartilage cells were on β-TCP bioceramic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of translational research 2016-01, Vol.8 (11), p.4564-4573
Hauptverfasser: Wang, Si-Qun, Xia, Jun, Chen, Jie, Lu, Jian-Xi, Wei, Yi-Bing, Chen, Fei-Yan, Huang, Gang-Yong, Shi, Jing-Sheng, Yu, Yong-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the effects of hard tissue engineering scaffold (the material is β-TCP) with different micro-structures on the proliferation of chondrocytes, and the influence of its composite erythrocytes on the repair of articular cartilage defects. Rabbit cartilage cells were on β-TCP bioceramic scaffold with different micro-structures in vitro, the proliferation growth trend of chondrocytes within the scaffold was calculated, and a optimal micro-structure suitable for cartilage cell growth was determined. Composite chondrocytes were implanted into rabbit models of articular cartilage defects, and the repair situation was observed. the bioceramic scaffold with an inner diameter of 120 μm and an aperture of 500-630 μm was suitable for the growth of cartilage cells. Scaffold loaded with second generation of cartilage cell suspension got a top histological score of 20.76±2.13, which was closely similar to that of normal cartilage. When loaded with the second generation of cartilage cells, the β-TCP biological ceramic scaffold with a pore size of 500-630 μm, and an inner diameter of 120 μm, shows a best repairing effect on animal articular cartilage defects.
ISSN:1943-8141
1943-8141