MicroRNA profiles in a monkey testicular injury model induced by testicular hyperthermia
To characterize microRNAs (miRNAs) involved in testicular toxicity in cynomolgus monkeys, miRNA profiles were investigated using next‐generation sequencing (NGS), microarray and reverse transcription‐quantitative real‐time‐PCR (RT‐qPCR) methods. First, to identify organ‐specific miRNAs, we compared...
Gespeichert in:
Veröffentlicht in: | Journal of applied toxicology 2016-12, Vol.36 (12), p.1614-1621 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To characterize microRNAs (miRNAs) involved in testicular toxicity in cynomolgus monkeys, miRNA profiles were investigated using next‐generation sequencing (NGS), microarray and reverse transcription‐quantitative real‐time‐PCR (RT‐qPCR) methods. First, to identify organ‐specific miRNAs, we compared the expression levels of miRNAs in the testes to those in representative organs (liver, heart, kidney, lung, spleen and small intestine) obtained from naïve mature male and female monkeys (n = 2/sex) using NGS analysis. Consequently, miR‐34c‐5p, miR‐202‐5p, miR‐449a and miR‐508‐3p were identified to be testicular‐specific miRNAs in cynomolgus monkeys. Next, we investigated miRNA profiles after testicular–hyperthermia (TH) treatment to determine which miRNAs are involved in testicular injury. In this experiment, mature male monkeys were divided into groups with or without TH‐treatment (n = 3/group) by immersion of the testes in a water bath at 43 °C for 30 min for 5 consecutive days. As a result, TH treatment induced testicular injury in all animals, which was characterized by decreased numbers of spermatocytes and spermatids. In a microarray analysis of the testis, 11 up‐regulated (>2.0 fold) and 13 down‐regulated ( |
---|---|
ISSN: | 0260-437X 1099-1263 |
DOI: | 10.1002/jat.3326 |