Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry

ABSTRACT Orai1 is a transmembrane protein that forms homomeric, calcium‐selective channels activated by stromal interactionmolecule 1 (STIM1) after depletion of intracellular calciumstores. In adult skeletalmuscle, depletion of sarcoplasmic reticulum calcium activates STIM1/Orai1‐dependent store‐ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2016-12, Vol.30 (12), p.4109-4119
Hauptverfasser: Carrell, Ellie M., Coppola, Aundrea R., McBride, Helen J., Dirksen, Robert T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4119
container_issue 12
container_start_page 4109
container_title The FASEB journal
container_volume 30
creator Carrell, Ellie M.
Coppola, Aundrea R.
McBride, Helen J.
Dirksen, Robert T.
description ABSTRACT Orai1 is a transmembrane protein that forms homomeric, calcium‐selective channels activated by stromal interactionmolecule 1 (STIM1) after depletion of intracellular calciumstores. In adult skeletalmuscle, depletion of sarcoplasmic reticulum calcium activates STIM1/Orai1‐dependent store‐operated calcium entry. Here, we used constitutive and inducible muscle‐specific Orai1‐knockout (KO) mice to determine the acute and long‐term developmental effects of Orai1 ablation onmuscle structure and function. Skeletalmuscles fromconstitutive, musclespecific Orai‐KO mice exhibited normal postnatal growth and fiber type differentiation. However, a significant reduction in fiber cross‐sectional area occurred by 3 mo of age, with the most profound reduction observed in oxidative, fatigue‐resistant fiber types. Soleus muscles of constitutive Orai‐KO mice exhibited a reduction in unique type I fibers, concomitant with an increase in hybrid fibers expressing both type I and type IIA myosins. Additionally, ex vivo force measurements showed reduced maximal specific force and in vivo exercise assays revealed reduced endurance in constitutive muscle‐specific Orai‐KO mice. Using tamoxifen‐inducible, musclespecific Orai‐KO mice, these functional deficits were found to be the result of the delayed fiber changes resulting from an early developmental loss of Orai1 and not the result of an acute loss of Orai1‐dependent store‐operated calcium entry.—Carrell, E. M., Coppola, A. R., McBride, H. J., Dirksen, R. T. Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry. FASEB J. 30, 4109–4119 (2016). www.fasebj.org
doi_str_mv 10.1096/fj.201600621R
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5102113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1839121043</sourcerecordid><originalsourceid>FETCH-LOGICAL-p323R-57a4d35345480d7a0c2b04e9cd839126d482f74df5ede5849539848b05e69e453</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCILoUjV-QjEkoZf8a5ILWrLhRVqtTC2XKSya5X2TjYDig3blz5jfwSEigt3DiN5r2Z9540k2XPKZxQKNXrdn_CgCoAxej1g2xFJYdcaQUPsxXokuVKcX2UPYlxDwB0Hn2cHbFC6kIqvcq-XQXrKMF-Z_saIzmMse5w7psxLAipJjIEf_DJ9VvS2uS2I_74-j1gdDHZPpE0DUguSOsqDKT2fcIZrMZEej-Tu-DH7Y7YekxIYvJhWfYDBpuwIWvLXs1eKUxPs0et7SI-u63H2cfN-Yf1u_zy6u3F-vQyHzjj17ksrGi45EIKDU1hoWYVCCzrRvOSMtUIzdpCNK3EBqUWpeSlFroCiapEIflx9ua37jBWB2zqxdx2ZgjuYMNkvHXmX6Z3O7P1n42kwCjls8DLW4HgP40Ykzm4WGPX2R79GA3VSnNQion_GF0yUxCL6ou_Y93l-XOo-9xfXIfTHU_BLF9g2r25_wKzuTljm9Ob87P3HCj7hfGfeKarKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839121043</pqid></control><display><type>article</type><title>Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Carrell, Ellie M. ; Coppola, Aundrea R. ; McBride, Helen J. ; Dirksen, Robert T.</creator><creatorcontrib>Carrell, Ellie M. ; Coppola, Aundrea R. ; McBride, Helen J. ; Dirksen, Robert T.</creatorcontrib><description>ABSTRACT Orai1 is a transmembrane protein that forms homomeric, calcium‐selective channels activated by stromal interactionmolecule 1 (STIM1) after depletion of intracellular calciumstores. In adult skeletalmuscle, depletion of sarcoplasmic reticulum calcium activates STIM1/Orai1‐dependent store‐operated calcium entry. Here, we used constitutive and inducible muscle‐specific Orai1‐knockout (KO) mice to determine the acute and long‐term developmental effects of Orai1 ablation onmuscle structure and function. Skeletalmuscles fromconstitutive, musclespecific Orai‐KO mice exhibited normal postnatal growth and fiber type differentiation. However, a significant reduction in fiber cross‐sectional area occurred by 3 mo of age, with the most profound reduction observed in oxidative, fatigue‐resistant fiber types. Soleus muscles of constitutive Orai‐KO mice exhibited a reduction in unique type I fibers, concomitant with an increase in hybrid fibers expressing both type I and type IIA myosins. Additionally, ex vivo force measurements showed reduced maximal specific force and in vivo exercise assays revealed reduced endurance in constitutive muscle‐specific Orai‐KO mice. Using tamoxifen‐inducible, musclespecific Orai‐KO mice, these functional deficits were found to be the result of the delayed fiber changes resulting from an early developmental loss of Orai1 and not the result of an acute loss of Orai1‐dependent store‐operated calcium entry.—Carrell, E. M., Coppola, A. R., McBride, H. J., Dirksen, R. T. Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry. FASEB J. 30, 4109–4119 (2016). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201600621R</identifier><identifier>PMID: 27587568</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Calcium - metabolism ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Calcium Signaling - genetics ; Calcium Signaling - physiology ; Cell Line ; development ; exercise ; Humans ; Membrane Proteins - metabolism ; Mice, Knockout ; Muscle, Skeletal - metabolism ; myosin ; Neoplasm Proteins - genetics ; ORAI1 Protein - genetics ; skeletal muscle ; Stromal Interaction Molecule 1 - genetics</subject><ispartof>The FASEB journal, 2016-12, Vol.30 (12), p.4109-4119</ispartof><rights>FASEB</rights><rights>FASEB.</rights><rights>FASEB 2016 FASEB</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.201600621R$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.201600621R$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27587568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrell, Ellie M.</creatorcontrib><creatorcontrib>Coppola, Aundrea R.</creatorcontrib><creatorcontrib>McBride, Helen J.</creatorcontrib><creatorcontrib>Dirksen, Robert T.</creatorcontrib><title>Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT Orai1 is a transmembrane protein that forms homomeric, calcium‐selective channels activated by stromal interactionmolecule 1 (STIM1) after depletion of intracellular calciumstores. In adult skeletalmuscle, depletion of sarcoplasmic reticulum calcium activates STIM1/Orai1‐dependent store‐operated calcium entry. Here, we used constitutive and inducible muscle‐specific Orai1‐knockout (KO) mice to determine the acute and long‐term developmental effects of Orai1 ablation onmuscle structure and function. Skeletalmuscles fromconstitutive, musclespecific Orai‐KO mice exhibited normal postnatal growth and fiber type differentiation. However, a significant reduction in fiber cross‐sectional area occurred by 3 mo of age, with the most profound reduction observed in oxidative, fatigue‐resistant fiber types. Soleus muscles of constitutive Orai‐KO mice exhibited a reduction in unique type I fibers, concomitant with an increase in hybrid fibers expressing both type I and type IIA myosins. Additionally, ex vivo force measurements showed reduced maximal specific force and in vivo exercise assays revealed reduced endurance in constitutive muscle‐specific Orai‐KO mice. Using tamoxifen‐inducible, musclespecific Orai‐KO mice, these functional deficits were found to be the result of the delayed fiber changes resulting from an early developmental loss of Orai1 and not the result of an acute loss of Orai1‐dependent store‐operated calcium entry.—Carrell, E. M., Coppola, A. R., McBride, H. J., Dirksen, R. T. Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry. FASEB J. 30, 4109–4119 (2016). www.fasebj.org</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Signaling - genetics</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Line</subject><subject>development</subject><subject>exercise</subject><subject>Humans</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice, Knockout</subject><subject>Muscle, Skeletal - metabolism</subject><subject>myosin</subject><subject>Neoplasm Proteins - genetics</subject><subject>ORAI1 Protein - genetics</subject><subject>skeletal muscle</subject><subject>Stromal Interaction Molecule 1 - genetics</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQjRCILoUjV-QjEkoZf8a5ILWrLhRVqtTC2XKSya5X2TjYDig3blz5jfwSEigt3DiN5r2Z9540k2XPKZxQKNXrdn_CgCoAxej1g2xFJYdcaQUPsxXokuVKcX2UPYlxDwB0Hn2cHbFC6kIqvcq-XQXrKMF-Z_saIzmMse5w7psxLAipJjIEf_DJ9VvS2uS2I_74-j1gdDHZPpE0DUguSOsqDKT2fcIZrMZEej-Tu-DH7Y7YekxIYvJhWfYDBpuwIWvLXs1eKUxPs0et7SI-u63H2cfN-Yf1u_zy6u3F-vQyHzjj17ksrGi45EIKDU1hoWYVCCzrRvOSMtUIzdpCNK3EBqUWpeSlFroCiapEIflx9ua37jBWB2zqxdx2ZgjuYMNkvHXmX6Z3O7P1n42kwCjls8DLW4HgP40Ykzm4WGPX2R79GA3VSnNQion_GF0yUxCL6ou_Y93l-XOo-9xfXIfTHU_BLF9g2r25_wKzuTljm9Ob87P3HCj7hfGfeKarKQ</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Carrell, Ellie M.</creator><creator>Coppola, Aundrea R.</creator><creator>McBride, Helen J.</creator><creator>Dirksen, Robert T.</creator><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>201612</creationdate><title>Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry</title><author>Carrell, Ellie M. ; Coppola, Aundrea R. ; McBride, Helen J. ; Dirksen, Robert T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p323R-57a4d35345480d7a0c2b04e9cd839126d482f74df5ede5849539848b05e69e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Signaling - genetics</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Line</topic><topic>development</topic><topic>exercise</topic><topic>Humans</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice, Knockout</topic><topic>Muscle, Skeletal - metabolism</topic><topic>myosin</topic><topic>Neoplasm Proteins - genetics</topic><topic>ORAI1 Protein - genetics</topic><topic>skeletal muscle</topic><topic>Stromal Interaction Molecule 1 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrell, Ellie M.</creatorcontrib><creatorcontrib>Coppola, Aundrea R.</creatorcontrib><creatorcontrib>McBride, Helen J.</creatorcontrib><creatorcontrib>Dirksen, Robert T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrell, Ellie M.</au><au>Coppola, Aundrea R.</au><au>McBride, Helen J.</au><au>Dirksen, Robert T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2016-12</date><risdate>2016</risdate><volume>30</volume><issue>12</issue><spage>4109</spage><epage>4119</epage><pages>4109-4119</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT Orai1 is a transmembrane protein that forms homomeric, calcium‐selective channels activated by stromal interactionmolecule 1 (STIM1) after depletion of intracellular calciumstores. In adult skeletalmuscle, depletion of sarcoplasmic reticulum calcium activates STIM1/Orai1‐dependent store‐operated calcium entry. Here, we used constitutive and inducible muscle‐specific Orai1‐knockout (KO) mice to determine the acute and long‐term developmental effects of Orai1 ablation onmuscle structure and function. Skeletalmuscles fromconstitutive, musclespecific Orai‐KO mice exhibited normal postnatal growth and fiber type differentiation. However, a significant reduction in fiber cross‐sectional area occurred by 3 mo of age, with the most profound reduction observed in oxidative, fatigue‐resistant fiber types. Soleus muscles of constitutive Orai‐KO mice exhibited a reduction in unique type I fibers, concomitant with an increase in hybrid fibers expressing both type I and type IIA myosins. Additionally, ex vivo force measurements showed reduced maximal specific force and in vivo exercise assays revealed reduced endurance in constitutive muscle‐specific Orai‐KO mice. Using tamoxifen‐inducible, musclespecific Orai‐KO mice, these functional deficits were found to be the result of the delayed fiber changes resulting from an early developmental loss of Orai1 and not the result of an acute loss of Orai1‐dependent store‐operated calcium entry.—Carrell, E. M., Coppola, A. R., McBride, H. J., Dirksen, R. T. Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry. FASEB J. 30, 4109–4119 (2016). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>27587568</pmid><doi>10.1096/fj.201600621R</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2016-12, Vol.30 (12), p.4109-4119
issn 0892-6638
1530-6860
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5102113
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Animals
Calcium - metabolism
Calcium Channels - genetics
Calcium Channels - metabolism
Calcium Signaling - genetics
Calcium Signaling - physiology
Cell Line
development
exercise
Humans
Membrane Proteins - metabolism
Mice, Knockout
Muscle, Skeletal - metabolism
myosin
Neoplasm Proteins - genetics
ORAI1 Protein - genetics
skeletal muscle
Stromal Interaction Molecule 1 - genetics
title Orai1 enhances muscle endurance by promoting fatigue‐resistant type I fiber content but not through acute store‐operated Ca2+ entry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orai1%20enhances%20muscle%20endurance%20by%20promoting%20fatigue%E2%80%90resistant%20type%20I%20fiber%20content%20but%20not%20through%20acute%20store%E2%80%90operated%20Ca2+%20entry&rft.jtitle=The%20FASEB%20journal&rft.au=Carrell,%20Ellie%20M.&rft.date=2016-12&rft.volume=30&rft.issue=12&rft.spage=4109&rft.epage=4119&rft.pages=4109-4119&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201600621R&rft_dat=%3Cproquest_pubme%3E1839121043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1839121043&rft_id=info:pmid/27587568&rfr_iscdi=true