Reprogramming of avian neural crest axial identity and cell fate

Neural crest populations along the embryonic body axis of vertebrates differ in developmental potential and fate, so that only the cranial neural crest can contribute to the craniofacial skeleton in vivo. We explored the regulatory program that imbues the cranial crest with its specialized features....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2016-06, Vol.352 (6293), p.1570-1573
Hauptverfasser: Simoes-Costa, Marcos, Bronner, Marianne E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural crest populations along the embryonic body axis of vertebrates differ in developmental potential and fate, so that only the cranial neural crest can contribute to the craniofacial skeleton in vivo. We explored the regulatory program that imbues the cranial crest with its specialized features. Using axial-level specific enhancers to isolate and perform genome-wide profiling of the cranial versus trunk neural crest in chick embryos, we identified and characterized regulatory relationships between a set of cranial-specific transcription factors. Introducing components of this circuit into neural crest cells of the trunk alters their identity and endows these cells with the ability to give rise to chondroblasts in vivo. Our results demonstrate that gene regulatory circuits that support the formation of particular neural crest derivatives may be used to reprogram specific neural crest–derived cell types.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aaf2729