Ascorbic acid oxidation of thiol groups from dithiotreitol is mediated by its conversion to dehydroascorbic acid
The aim of the present study was to investigate whether the pro-oxidant effect of ascorbic acid towards thiol groups could be mediated by free radicals formed during its auto-oxidation and/or by a direct oxidation of -SH groups by its oxidized form (dehydroascorbic acid). This hypothesis was examine...
Gespeichert in:
Veröffentlicht in: | EXCLI journal 2012-01, Vol.11, p.604-612 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present study was to investigate whether the
pro-oxidant effect of ascorbic acid towards thiol groups could be mediated by free radicals formed during its auto-oxidation and/or by a direct oxidation of -SH groups by its oxidized form (dehydroascorbic acid). This hypothesis was examined by measuring the rate of AA (ascorbic acid) oxidation in MOPS (3-morpholinepropanesulfonic acid buffer) and phosphate buffer (PB). Here we have used dithiothreitol (DTT) as model of vicinal thiol-containing enzymes, namely δ-aminolevulinate dehydratase. The rate of AA and DTT oxidation was more pronounced in the presence of PB than in the MOPS. AA oxidation induced by iron/EDTA complex was significantly reduced by addition of superoxide dismutase, catalase and DTT to the reaction medium. H
O
alone did not stimulate the oxidation of AA; however, AA oxidation was enhanced significantly with the addition of crescent concentrations of iron. Conversely, in DTT oxidation assay (without AA) the addition of iron, EDTA and H
O
, did not promote the oxidation of -SH groups. Our findings suggest that in the presence of physiological concentrations of AA and thiols, the oxidation of -SH groups is mediated by AA conversion to dehydroascorbic acid with the participation of iron. Furthermore, free radical species formed during the auto-oxidation of AA apparently did not oxidize thiol groups to a significant extent. |
---|---|
ISSN: | 1611-2156 1611-2156 |