Alteration of microRNA expressions in the pons and medulla in rats after 3,3′-iminodipropionitrile administration

Although 3,3′-iminodipropionitrile (IDPN) is widely used as a neurotoxicant to cause axonopathy due to accumulation of neurofilaments in several rodent models, its mechanism of neurotoxicity has not been fully understood. In particular, no information regarding microRNA (miRNA) alteration associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Toxicologic Pathology 2016, Vol.29(4), pp.229-236
Hauptverfasser: Ogata, Keiko, Kushida, Masahiko, Miyata, Kaori, Sumida, Kayo, Takeda, Shuji, Izawa, Takeshi, Kuwamura, Mitsuru, Yamate, Jyoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although 3,3′-iminodipropionitrile (IDPN) is widely used as a neurotoxicant to cause axonopathy due to accumulation of neurofilaments in several rodent models, its mechanism of neurotoxicity has not been fully understood. In particular, no information regarding microRNA (miRNA) alteration associated with IDPN is available. This study was conducted to reveal miRNA alteration related to IDPN-induced neurotoxicity. Rats were administered IDPN (20, 50, or 125 mg/kg/day) orally for 3, 7, and 14 days. Histopathological features were investigated using immunohistochemistry for neurofilaments and glial cells, and miRNA alterations were analyzed by microarray and reverse transcription polymerase chain reaction. Nervous symptoms such as ataxic gait and head bobbing were observed from Day 9 at 125 mg/kg. Axonal swelling due to accumulation of neurofilaments was observed especially in the pons, medulla, and spinal cord on Day 7 at 125 mg/kg and on Day 14 at 50 and 125 mg/kg. Furthermore, significant upregulation of miR-547* was observed in the pons and medulla in treated animals only on Day 14 at 125 mg/kg. This is the first report indicating that miR-547* is associated with IDPN-induced neurotoxicity, especially in an advanced stage of axonopathy.
ISSN:0914-9198
1881-915X
1347-7404
DOI:10.1293/tox.2016-0019