Pigmentation and fitness trade-offs through the lens of artificial selection

Pigmentation is a classic phenotype that varies widely and adaptively in nature both within and among taxa. Genes underlying pigmentation phenotype are highly pleiotropic, creating the potential for functional trade-offs. However, the basic tenets of this trade-off hypothesis with respect to life-hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology letters (2005) 2016-10, Vol.12 (10), p.20160625
Hauptverfasser: Rajpurohit, Subhash, Richardson, Rani, Dean, John, Vazquez, Raul, Wong, Grace, Schmidt, Paul S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pigmentation is a classic phenotype that varies widely and adaptively in nature both within and among taxa. Genes underlying pigmentation phenotype are highly pleiotropic, creating the potential for functional trade-offs. However, the basic tenets of this trade-off hypothesis with respect to life-history traits have not been directly addressed. In natural populations of Drosophila melanogaster, the degree of melanin pigmentation covaries with fecundity and several other fitness traits. To examine correlations and potential trade-offs associated with variation in pigmentation, we selected replicate outbred populations for extreme pigmentation phenotypes. Replicate populations responded rapidly to the selection regime and after 100 generations of artificial selection were phenotyped for pigmentation as well as the two basic fitness parameters of fecundity and longevity. Our data demonstrate that selection on pigmentation resulted in a significant shift in both fecundity and longevity profiles. Selection for dark pigmentation resulted in greater fecundity and no pronounced change in longevity, whereas selection for light pigmentation decreased longevity but did not affect fecundity. Our results indicate the pleiotropic nature of alleles underlying pigmentation phenotype and elucidate possible trade-offs between pigmentation and fitness traits that may shape patterns of phenotypic variation in natural populations.
ISSN:1744-9561
1744-957X
DOI:10.1098/rsbl.2016.0625