AntihypoxamiR functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing

Abstract Peripheral vasculopathies cause severe wound hypoxia inducing the hypoxamiR miR-210. High level of miR-210, persisting in wound-edge tissue as ischemic memory, suppresses oxidative metabolism and inhibits cell proliferation necessary for healing. In wound-edge tissue of chronic wound patien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomedicine 2016-10, Vol.12 (7), p.1827-1831
Hauptverfasser: Ghatak, Subhadip, Li, Jilong, Chan, Yuk C, Gnyawali, Surya C, Steen, Erin, Yung, Bryant C, Khanna, Savita, Roy, Sashwati, Lee, Robert J, Sen, Chandan K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Peripheral vasculopathies cause severe wound hypoxia inducing the hypoxamiR miR-210. High level of miR-210, persisting in wound-edge tissue as ischemic memory, suppresses oxidative metabolism and inhibits cell proliferation necessary for healing. In wound-edge tissue of chronic wound patients, elevated miR-210 was tightly associated with inhibition of epidermal cell proliferation as evident by lowered Ki67 immunoreactivity. To inhibit miR-210 in murine ischemic wound-edge tissue, we report the formulation of antihypoxamiR functionalized gramicidin lipid nanoparticles (AFGLN). A single intradermal delivery of AFGLN encapsulating LNA-conjugated anti-hypoximiR-210 (AFGLNmiR-210 ) lowered miR-210 level in the ischemic wound-edge tissue. In rep TOP™ mito IRE mice, AFGLNmiR-210 rescued keratinocyte proliferation as visualized by in vivo imaging system (IVIS).31 P NMR studies showed elevated ATP content at the ischemic wound-edge tissue following AFGLNmiR-210 treatment indicating recovering bioenergetics necessary for healing. Consistently, AFGLNmiR-210 improved ischemic wound closure. The nanoparticle based approach reported herein is effective for miR-directed wound therapeutics warranting further translational development.
ISSN:1549-9634
1549-9642
DOI:10.1016/j.nano.2016.03.004