Integrin-dependent homotypic adhesion of neutrophils. Arachidonic acid activates Raf-1/Mek/Erk via a 5-lipoxygenase- dependent pathway
AA stimulates integrin-dependent neutrophil adhesion, a critical early step in acute inflammation. However, neither the signaling pathway(s) of AA-stimulated adhesion, nor whether AA acts directly or through the generation of active metabolites, has been elucidated. Previously, we have observed a ti...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 1998-07, Vol.102 (1), p.165-175 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AA stimulates integrin-dependent neutrophil adhesion, a critical early step in acute inflammation. However, neither the signaling pathway(s) of AA-stimulated adhesion, nor whether AA acts directly or through the generation of active metabolites, has been elucidated. Previously, we have observed a tight association between neutrophil Erk activation and homotypic adhesion in response to chemoattractants acting through G protein-linked receptors. We now report a similar association between homotypic adhesion and Erk activation in response to AA. Erk activation was cyclooxygenase independent and required AA metabolism to 5(S)- hydroperoxyeicosatetraenoic acid (5-HpETE) via 5-lipoxygenase, but not the further lipoxygenase-dependent metabolism of 5-HpETE to leukotrienes. AA stimulation of Erk was accompanied by Raf-1 activation and was sensitive to inhibitors of Raf-1 and Mek. Whereas activation of Erk by AA was pertussis toxin sensitive, [3H]-AA binding to neutrophils was not saturable, suggesting that an AA metabolite activates a G protein. Consistent with this hypothesis, Erk activation by 5(S)-hydroxyeicosatetraenoic acid (5-HETE; lipoxygenase-independent metabolite of 5-HpETE) was also pertussis toxin sensitive. These data suggest that a 5-lipoxygenase metabolite of AA, e.g., 5-HETE, is released from AA-treated cells to engage a plasma membrane-associated, pertussis toxin-sensitive, G protein-linked receptor, leading to activation of Erk and adhesion via the Raf-1/Mek signal transduction pathway. |
---|---|
ISSN: | 0021-9738 |
DOI: | 10.1172/jci592 |