Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice
Previous studies of osteopetrotic (op) mice lacking macrophage colony-stimulating factor (M-CSF) have revealed an inhibition of atherosclerosis development in the apolipoprotein E (apo E)-deficient model and in a diet-induced model. Using LDL receptor-deficient mice, we now show that atheroma develo...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 1998-06, Vol.101 (12), p.2702-2710 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies of osteopetrotic (op) mice lacking macrophage colony-stimulating factor (M-CSF) have revealed an inhibition of atherosclerosis development in the apolipoprotein E (apo E)-deficient model and in a diet-induced model. Using LDL receptor-deficient mice, we now show that atheroma development depends on M-CSF concentration, as not only did homozygous osteopetrotic (op/op) mice have dramatically reduced lesions (approximately 0.3% of control lesion size) but heterozygous (op/+) mice had lesions < 1% of controls. Mice heterozygous for the op mutation (op/+) had plasma levels of M-CSF about half those in controls (+/+). The finding that an approximately 2-fold reduction in M-CSF expression reduced lesion size approximately 100-fold suggests the requirement for a threshold level of M-CSF. The effect of M-CSF on atherosclerosis did not appear to be mediated either by changes in plasma lipoprotein levels or alterations in the number of circulating monocytes, since both op/op and op/+ mice exhibited higher levels of atherogenic lipoprotein particles and (op/+) mice showed a near normal number of circulating monocytes. LDL receptor-null littermates of genotypes from op/op, op/+, to +/+ showed monocyte differentials of approximately 4.5, 8, and 10%, respectively. Taken together, these results suggest that the effects of M-CSF on atherogenesis may not be mediated by expression of M-CSF systemically or by modulation of the number of circulating monocytes. These studies support the conclusion that M-CSF participates critically in fatty streak formation and progression to a complex fibrous lesion. |
---|---|
ISSN: | 0021-9738 |
DOI: | 10.1172/jci119891 |