Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro

Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2016-09, Vol.19 (3), p.311-325
Hauptverfasser: Matsa, Elena, Burridge, Paul W., Yu, Kun-Hsing, Ahrens, John H., Termglinchan, Vittavat, Wu, Haodi, Liu, Chun, Shukla, Praveen, Sayed, Nazish, Churko, Jared M., Shao, Ningyi, Woo, Nicole A., Chao, Alexander S., Gold, Joseph D., Karakikes, Ioannis, Snyder, Michael P., Wu, Joseph C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine. [Display omitted] •Reprogramming and cardiac differentiation preserve patient-specific gene expression•Metabolic and stress genes account for inter-patient transcriptome variation•Bioinformatics analysis predicts patient-specific drug-induced cardiotoxicity•Drug-induced cardiotoxicity can be functionally evaluated in vitro using hiPSC-CMs hiPSC-CM transcriptome profiling showed greater inter-patient than intra-patient variation. Toxicology analysis predicted and functionally validated individualized drug responsiveness, suggesting that hiPSC-CMs could serve as preclinical readout platforms for precision medicine.
ISSN:1934-5909
1875-9777
DOI:10.1016/j.stem.2016.07.006