Quaternary structures of opsin in live cells revealed by FRET spectrometry

Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2016-11, Vol.473 (21), p.3819-3836
Hauptverfasser: Mishra, Ashish K, Gragg, Megan, Stoneman, Michael R, Biener, Gabriel, Oliver, Julie A, Miszta, Przemyslaw, Filipek, Slawomir, Raicu, Valerică, Park, Paul S-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc membranes of rod photoreceptor cells. However, the physiological relevance of the observed oligomers has been questioned since observations were made on samples prepared from the retina at low temperatures. To investigate the oligomeric status of opsin in live cells at body temperatures, we utilized a novel approach called Förster resonance energy transfer spectrometry, which previously has allowed the determination of the stoichiometry and geometry (i.e. quaternary structure) of various GPCRs. In the current study, we have extended the method to additionally determine whether or not a mixture of oligomeric forms of opsin exists and in what proportion. The application of this improved method revealed that opsin expressed in live Chinese hamster ovary (CHO) cells at 37°C exists as oligomers of various sizes. At lower concentrations, opsin existed in an equilibrium of dimers and tetramers. The tetramers were in the shape of a near-rhombus. At higher concentrations of the receptor, higher-order oligomers began to form. Thus, a mixture of different oligomeric forms of opsin is present in the membrane of live CHO cells and oligomerization occurs in a concentration-dependent manner. The general principles underlying the concentration-dependent oligomerization of opsin may be universal and apply to other GPCRs as well.
ISSN:0264-6021
1470-8728
DOI:10.1042/bcj20160422