Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro

Dietary phosphorus (P) restriction is known to ameliorate secondary hyperparathyroidism in renal failure patients. In early renal failure, this effect may be mediated by an increase in 1,25-(OH)2D3, whereas in advanced renal failure, P restriction can act independent of changes in 1,25-(OH)2D3 and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 1996-06, Vol.97 (11), p.2534-2540
Hauptverfasser: Slatopolsky, E, Finch, J, Denda, M, Ritter, C, Zhong, M, Dusso, A, MacDonald, P N, Brown, A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dietary phosphorus (P) restriction is known to ameliorate secondary hyperparathyroidism in renal failure patients. In early renal failure, this effect may be mediated by an increase in 1,25-(OH)2D3, whereas in advanced renal failure, P restriction can act independent of changes in 1,25-(OH)2D3 and serum ionized calcium (ICa). In this study, we examined the effects of dietary P on serum PTH, PTH mRNA, and parathyroid gland (PTG) hyperplasia in uremic rats. Normal and uremic rats were maintained on a low (0.2%) or high (0.8%) P diet for 2 mo. PTG weight and serum PTH were similar in both groups of normal rats and in uremic rats fed the 0.2% P diet. In contrast, there were significant increases in serum PTH (130 +/- 25 vs. 35 +/- 3.5 pg/ml, P < 0.01), PTG weight (1.80 +/- 0.13 vs. 0.88 +/- 0.06 microg/gram of body weight, P < 0.01), and PTG DNA (1.63 +/- 0.24 vs. 0.94 +/- 0.07 microg DNA/gland, P < 0.01) in the uremic rats fed the 0.8% P diet as compared with uremic rats fed the 0.2% P diet. Serum ICa and 1,25-(OH)2D3 were not altered over this range of dietary P, suggesting a direct effect of P on PTG function. We tested this possibility in organ cultures of rat PTGs. While PTH secretion was acutely (30 min) regulated by medium calcium, the effects of medium P were not evident until 3 h. During a 6-h incubation, PTH accumulation was significantly greater in the 2.8 mM P medium than in the 0.2 mM P medium (1,706 +/- 215 vs. 1,033 +/- 209 pg/microg DNA, P < 0.02); the medium ICa was 1.25 mM in both conditions. Medium P did not alter PTH mRNA in this system, but cycloheximide (10 microg/ml) abolished the effect of P on PTH secretion. Thus, the effect of P is posttranscriptional, affecting PTH at a translational or posttranslational step. Collectively, these in vivo and in vitro results demonstrate a direct action of P on PTG function that is independent of ICa and 1,25-(OH)2D3.
ISSN:0021-9738
DOI:10.1172/jci118701