3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces
Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical senso...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2016-10, Vol.67 (19), p.5605-5614 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young’s elastic modulus of intact poplar roots (32 MPa), a rapid |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erw320 |