Insulin-like growth factor binding protein-2 regulates β-catenin signaling pathway in glioma cells and contributes to poor patient prognosis

Upregulation of insulin-like growth factor binding protein 2 (IGFBP-2) is often associated with aggressiveness of glioblastoma (GBM) and contributes to poor prognosis for GBM patients. In view of the regulation of β-catenin by IGFBP-2 in breast cancer and the crucial role of β-catenin pathway in gli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2016-11, Vol.18 (11), p.1487-1497
Hauptverfasser: Patil, Shilpa S, Gokulnath, Priyanka, Bashir, Mohsin, Shwetha, Shivayogi D, Jaiswal, Janhvi, Shastry, Arun H, Arimappamagan, Arivazhagan, Santosh, Vani, Kondaiah, Paturu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Upregulation of insulin-like growth factor binding protein 2 (IGFBP-2) is often associated with aggressiveness of glioblastoma (GBM) and contributes to poor prognosis for GBM patients. In view of the regulation of β-catenin by IGFBP-2 in breast cancer and the crucial role of β-catenin pathway in glioma invasion, proliferation and maintenance of glioma stem cells, the mechanism of regulation of β-catenin by IGFBP-2, and its role in GBM prognosis was studied. Regulation of the β-catenin pathway was studied by immunocytochemistry, Western blot analysis, luciferase assays, and real-time RT-PCR. The role of IGFBP-2 was studied by subcutaneous tumor xenografts in immunocompromised mice using glioma cells engineered to express IGFBP-2 and its domains. GBM patient tumor tissues (n = 112) were analyzed for expression of IGFBP-2 and β-catenin by immunohistochemistry. Survival analysis was performed employing Cox regression and Kaplan-Meier survival analyses. IGFBP-2 knockdown in U251, T98G, and U373 or overexpression in LN229 and U87 cells revealed a role for IGFBP-2 in stabilization of β-catenin and regulation of its nuclear functions involving integrin-mediated inactivation of GSK3β. Similar results were obtained upon overexpression of the C-terminal domain of IGFBP-2 but not the N-terminal domain. Subcutaneous xenograft tumors overexpressing either full-length or the C-terminal domain of IGFBP-2 showed larger volume as compared with controls. Coexpression of high levels of IGFBP-2 and β-catenin was associated with worse prognosis (P = .001) in GBM patients. IGFBP-2 potentiates GBM tumor growth by the activation of the β-catenin pathway through its C-terminal domain, and their coexpression possibly contributes to worse patient prognosis.
ISSN:1522-8517
1523-5866
DOI:10.1093/neuonc/now053