M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development

In our previous report, M2-macrophage (Mφs) deficient mice showed increased renal calcium oxalate (CaOx) crystal formation; however, the role of Mφs-related-cytokines and chemokines that affect kidney stone formation remains unknown. Here, we investigated the role of M1/M2s in crystal development by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-10, Vol.6 (1), p.35167-35167, Article 35167
Hauptverfasser: Taguchi, Kazumi, Okada, Atsushi, Hamamoto, Shuzo, Unno, Rei, Moritoki, Yoshinobu, Ando, Ryosuke, Mizuno, Kentaro, Tozawa, Keiichi, Kohri, Kenjiro, Yasui, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In our previous report, M2-macrophage (Mφs) deficient mice showed increased renal calcium oxalate (CaOx) crystal formation; however, the role of Mφs-related-cytokines and chemokines that affect kidney stone formation remains unknown. Here, we investigated the role of M1/M2s in crystal development by using in vitro and in vivo approaches. The crystal phagocytic rate of bone marrow-derived M2Mφs was higher than that of bone marrow-derived Mφs and M1Mφs and increased on co-culture with renal tubular cells (RTCs). However, the amount of crystal attachment on RTCs reduced on co-culture with M2Mφs. In six hyperoxaluric C57BL/6J mice, M1Mφ transfusion and induction by LPS and IFN-γ facilitated renal crystal formation, whereas M2Mφ transfusion and induction by IL-4 and IL-13 suppressed renal crystal formation compared with the control. These M2Mφ treatments reduced the expression of crystal-related genes, such as osteopontin and CD44, whereas M1Mφ treatment increased the expression of pro-inflammatory and adhesion-related genes such as IL-6, inducible NOS, TNF-α, C3, and VCAM-1. The expression of M2Mφ-related genes was lower whereas that of M1Mφ-related genes was higher in papillary tissue of CaOx stone formers. Overall, our results suggest that renal crystal development is facilitated by M1Mφs, but suppressed by M2Mφs.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep35167