Novel Piezoelectric Paper‐Based Flexible Nanogenerators Composed of BaTiO3 Nanoparticles and Bacterial Cellulose

A piezoelectric paper based on BaTiO3 (BTO) nanoparticles and bacterial cellulose (BC) with excellent output properties for application of nanogenerators (NGs) is reported. A facile and scalable vacuum filtration method is used to fabricate the piezoelectric paper. The BTO/BC piezoelectric paper bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2016-02, Vol.3 (2), p.1500257-n/a
Hauptverfasser: Zhang, Guangjie, Liao, Qingliang, Zhang, Zheng, Liang, Qijie, Zhao, Yingli, Zheng, Xin, Zhang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A piezoelectric paper based on BaTiO3 (BTO) nanoparticles and bacterial cellulose (BC) with excellent output properties for application of nanogenerators (NGs) is reported. A facile and scalable vacuum filtration method is used to fabricate the piezoelectric paper. The BTO/BC piezoelectric paper based NG shows outstanding output performance with open‐circuit voltage of 14 V and short‐circuit current density of 190 nA cm−2. The maximum power density generated by this unique BTO/BC structure is more than ten times higher than BTO/polydimethylsiloxane structure. In bending conditions, the NG device can generate output voltage of 1.5 V, which is capable of driving a liquid crystal display screen. The improved performance can be ascribed to homogeneous distribution of piezoelectric BTO nanoparticles in the BC matrix as well as the enhanced stress on piezoelectric nanoparticles implemented by the unique percolated networks of BC nanofibers. The flexible BTO/BC piezoelectric paper based NG is lightweight, eco‐friendly, and cost‐effective, which holds great promises for achieving wearable or implantable energy harvesters and self‐powered electronics. Flexible piezoelectric paper composed of BaTiO3 nanoparticles and bacterial cellulose is fabricated by a facile filtration method. A flexible piezoelectric nanogenerator (NG) based on this piezoelectric paper can generate output open‐circuit voltage of 14 V and short‐circuit current density of 190 nA cm−2. A commercial liquid crystal display screen can be driven directly by cyclic bending and releasing deformation of the NG device.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201500257