Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

The structural stability and electrical performance of SiO 2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO 2 film (thickness ~ 5 nm) and SiC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-10, Vol.6 (1), p.34945-34945, Article 34945
Hauptverfasser: Kim, Dae-Kyoung, Jeong, Kwang-Sik, Kang, Yu-Seon, Kang, Hang-Kyu, Cho, Sang W., Kim, Sang-Ok, Suh, Dongchan, Kim, Sunjung, Cho, Mann-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structural stability and electrical performance of SiO 2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO 2 film (thickness ~ 5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO 2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiO x C y ) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO 2 films. Moreover, the plasma-assisted SiO 2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density ( D it  ≈ 10 11  cm −2  · eV −1 ). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiO x C y species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO 2 on SiC can be obtained by the controlling the formation of SiO x C y through the highly reactive direct plasma-assisted oxidation process.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep34945