Characterization of Viral Populations by Using Circular Sequencing
With the enormous sizes viral populations reach, many variants are at too low a frequency to be detected by conventional next-generation sequencing (NGS) methods. Circular sequencing (CirSeq) is a method by which the error rate of next-generation sequencing is decreased so that even low-frequency vi...
Gespeichert in:
Veröffentlicht in: | Journal of virology 2016-10, Vol.90 (20), p.8950-8953 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the enormous sizes viral populations reach, many variants are at too low a frequency to be detected by conventional next-generation sequencing (NGS) methods. Circular sequencing (CirSeq) is a method by which the error rate of next-generation sequencing is decreased so that even low-frequency viral variants can be accurately detected. The ability to visualize almost the entire genetic makeup of a viral swarm has implications for epidemiology, viral evolution, and vaccine design. Here we discuss experimental planning, analysis, and recent insights using CirSeq. |
---|---|
ISSN: | 0022-538X 1098-5514 |
DOI: | 10.1128/jvi.00804-14 |