Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly

Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-09, Vol.6 (1), p.34095-34095, Article 34095
Hauptverfasser: Kaur, Harneet, Yadav, Sandeep, Srivastava, Avanish. K., Singh, Nidhi, Schneider, Jörg J., Sinha, Om. P., Agrawal, Ved V., Srivastava, Ritu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the best of our knowledge, a mixture of N-methyl-2-pyrrolidone and deoxygenated water is employed as a subphase in Langmuir-Blodgett trough for assembling the nanosheets followed by their deposition on substrates and studied its field-effect transistor characteristics. Electron microscopy reveals the presence of densely aligned, crystalline, ultra-thin sheets of pristine phosphorene having lateral dimensions larger than hundred of microns. Furthermore, these assembled nanosheets retain their electronic properties and show a high current modulation of 10 4 at room temperature in field-effect transistor devices. The proposed technique provides semiconducting phosphorene thin films that are amenable for large area applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep34095