N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A
BoNT/A1 invades motoneurons by binding to the neuronal receptor SV2. A combination of structural, biophysical and cellular analyses reveal that BoNT/A1 binding and uptake require glycosylation of SV2. Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic ap...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2016-07, Vol.23 (7), p.656-662 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BoNT/A1 invades motoneurons by binding to the neuronal receptor SV2. A combination of structural, biophysical and cellular analyses reveal that BoNT/A1 binding and uptake require glycosylation of SV2.
Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan—which is conserved in all SV2 isoforms across vertebrates—is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors. |
---|---|
ISSN: | 1545-9993 1545-9985 |
DOI: | 10.1038/nsmb.3245 |