Comparison of blood volume pulse and skin conductance responses to mental and affective stimuli at different anatomical sites

Measurements of blood volume pulse (BVP) and skin conductance are commonly used as indications of psychological arousal in affective computing and human-machine interfaces. To date, palmar surfaces remain the primary site for these measurements. Placement of sensors on palmar surfaces, however, is u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological measurement 2011-10, Vol.32 (10), p.1529-1539
Hauptverfasser: Kushki, Azadeh, Fairley, Jillian, Merja, Satyam, King, Gillian, Chau, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measurements of blood volume pulse (BVP) and skin conductance are commonly used as indications of psychological arousal in affective computing and human-machine interfaces. To date, palmar surfaces remain the primary site for these measurements. Placement of sensors on palmar surfaces, however, is undesirable when recordings are fraught with motion and pressure artifacts. These artifacts are frequent when the human participant has involuntary movements as in hyperkinetic cerebral palsy. This motivates the use of alternative measurement sites. The present study examined the correlation between measurements of blood volume pulse and skin conductance obtained from three different sites on the body (fingers, toes and ear for BVP; fingers, toes and arch of the foot for skin conductance) in response to cognitive and affective stimuli. The results of this pilot study indicated significant inter-site correlation among signal features derived from different sites, with the exception of BVP amplitude, the number of electrodermal reactions and the slope of the electrodermal activity response. We attribute these differences in part to inter-site discrepancies in local skin conditions, such as skin temperature. Despite these differences, significant changes from baseline were present in the responses to the cognitive and affective stimuli at non-palmar sites, suggesting that these sites may provide viable signal measurements for use in affective computing and human-machine interface applications.
ISSN:0967-3334
1361-6579
DOI:10.1088/0967-3334/32/10/002