Genetic variants in RBFOX3 are associated with sleep latency
Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We...
Gespeichert in:
Veröffentlicht in: | European journal of human genetics : EJHG 2016-10, Vol.24 (10), p.1488-1495 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10(-08), 6.59 × 10(-)(08) and 9.17 × 10(-)(08)). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10(-)(02), 7.0 × 10(-)(03) and 2.5 × 10(-)(03); combined meta-analysis P-values=5.5 × 10(-07), 5.4 × 10(-07) and 1.0 × 10(-07)). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 × 10(-316)) and the central nervous system (P-value=7.5 × 10(-)(321)). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitters including gamma-aminobutyric acid and various monoamines (P-values |
---|---|
ISSN: | 1018-4813 1476-5438 |
DOI: | 10.1038/ejhg.2016.31 |