Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial

Aims/hypothesis Although the Diabetes Prevention Program (DPP) established lifestyle changes (diet, exercise and weight loss) as the ‘gold standard’ preventive therapy for diabetes, the relative contribution of exercise alone to the overall utility of the combined diet and exercise effect of DPP is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2016-10, Vol.59 (10), p.2088-2098
Hauptverfasser: Slentz, Cris A., Bateman, Lori A., Willis, Leslie H., Granville, Esther O., Piner, Lucy W., Samsa, Gregory P., Setji, Tracy L., Muehlbauer, Michael J., Huffman, Kim M., Bales, Connie W., Kraus, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims/hypothesis Although the Diabetes Prevention Program (DPP) established lifestyle changes (diet, exercise and weight loss) as the ‘gold standard’ preventive therapy for diabetes, the relative contribution of exercise alone to the overall utility of the combined diet and exercise effect of DPP is unknown; furthermore, the optimal intensity of exercise for preventing progression to diabetes remains very controversial. To establish clinical efficacy, we undertook a study (2009 to 2013) to determine: how much of the effect on measures of glucose homeostasis of a 6 month programme modelled after the first 6 months of the DPP is due to exercise alone; whether moderate- or vigorous-intensity exercise is better for improving glucose homeostasis; and to what extent amount of exercise is a contributor to improving glucose control. The primary outcome was improvement in fasting plasma glucose, with improvement in plasma glucose AUC response to an OGTT as the major secondary outcome. Methods The trial was a parallel clinical trial. Sedentary, non-smokers who were 45–75 year old adults ( n  = 237) with elevated fasting glucose (5.28–6.94 mmol/l) but without cardiovascular disease, uncontrolled hypertension, or diabetes, from the Durham area, were studied at Duke University. They were randomised into one of four 6 month interventions: (1) low amount (42 kJ kg body weight −1 week −1 [KKW])/moderate intensity: equivalent of expending 42 KKW (e.g. walking ∼16 km [8.6 miles] per week) with moderate-intensity (50% V . O 2 reserve ) exercise; (2) high amount (67 KKW)/moderate intensity: equivalent of expending 67 KKW (∼22.3 km [13.8 miles] per week) with moderate-intensity exercise; (3) high amount (67 KKW)/vigorous intensity: equivalent to group 2, but with vigorous-intensity exercise (75% V . O 2 reserve ); and (4) diet + 42 KKW moderate intensity: same as group 1 but with diet and weight loss (7%) to mimic the first 6 months of the DPP. Computer-generated randomisation lists were provided by our statistician (G. P. Samsa). The randomisation list was maintained by L. H. Willis and C. A. Slentz with no knowledge of or input into the scheduling, whereas all scheduling was done by L. A. Bateman, with no knowledge of the randomisation list. Subjects were automatically assigned to the next group listed on the randomisation sheet (with no ability to manipulate the list order) on the day that they came in for the OGTT, by L. H. Willis. All plasma analysis was done blinded by th
ISSN:0012-186X
1432-0428
DOI:10.1007/s00125-016-4051-z