Generation of Functional Cardiomyocytes from the Synoviocytes of Patients with Rheumatoid Arthritis via Induced Pluripotent Stem Cells
Cardiovascular disease is a leading cause of morbidity in rheumatoid arthritis (RA) patients. This study aimed to generate and characterise cardiomyocytes from induced pluripotent stem cells (iPSCs) of RA patients. Fibroblast-like synoviocytes (FLSs) from patients with RA and osteoarthritis (OA) wer...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-09, Vol.6 (1), p.32669-32669, Article 32669 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiovascular disease is a leading cause of morbidity in rheumatoid arthritis (RA) patients. This study aimed to generate and characterise cardiomyocytes from induced pluripotent stem cells (iPSCs) of RA patients. Fibroblast-like synoviocytes (FLSs) from patients with RA and osteoarthritis (OA) were successfully reprogrammed into RA-iPSCs and OA-iPSCs, respectively. The pluripotency of iPSCs was confirmed by quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining. Established iPSCs were differentiated into cardiomyocytes using a small molecule-based monolayer differentiation protocol. Within 12 days of cardiac differentiation from patient-specific and control-iPSCs, spontaneously beating cardiomyocytes (iPSC-CMs) were observed. All iPSC-CMs exhibited a reliable sarcomeric structure stained with antibodies against cardiac markers and similar expression profiles of cardiac-specific genes. Intracellular calcium signalling was recorded to compare calcium-handling properties among cardiomyocytes differentiated from the three groups of iPSCs. RA-iPSC-CMs had a lower amplitude and a shorter duration of calcium transients than the control groups. Peak tangential stress and the maximum contractile rate were also decreased in RA-iPSC-CMs, suggesting that contractility was reduced. This study demonstrates the successful generation of functional cardiomyocytes from pathogenic synovial cells in RA patients through iPSC reprogramming. Research using RA-iPSC-CMs might provide an opportunity to investigate the pathophysiology of cardiac involvement in RA. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep32669 |