PtdIns(3,4,5)P3-dependent Rac Exchanger 1 (PREX1) Rac-Guanine Nucleotide Exchange Factor (GEF) Activity Promotes Breast Cancer Cell Proliferation and Tumor Growth via Activation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) Signaling
PtdIns(3,4,5)P3-dependent Rac exchanger 1 (PREX1) is a Rac-guanine nucleotide exchange factor (GEF) overexpressed in a significant proportion of human breast cancers that integrates signals from upstream ErbB2/3 and CXCR4 membrane surface receptors. However, the PREX1 domains that facilitate its onc...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-08, Vol.291 (33), p.17258-17270 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PtdIns(3,4,5)P3-dependent Rac exchanger 1 (PREX1) is a Rac-guanine nucleotide exchange factor (GEF) overexpressed in a significant proportion of human breast cancers that integrates signals from upstream ErbB2/3 and CXCR4 membrane surface receptors. However, the PREX1 domains that facilitate its oncogenic activity and downstream signaling are not completely understood. We identify that ERK1/2 MAPK acts downstream of PREX1 and contributes to PREX1-mediated anchorage-independent cell growth. PREX1 overexpression increased but its shRNA knockdown decreased ERK1/2 phosphorylation in response to EGF/IGF-1 stimulation, resulting in induction of the cell cycle regulators cyclin D1 and p21WAF1/CIP1. PREX1-mediated ERK1/2 phosphorylation, anchorage-independent cell growth, and cell migration were suppressed by inhibition of MEK1/2/ERK1/2 signaling. PREX1 overexpression reduced staurosporine-induced apoptosis whereas its shRNA knockdown promoted apoptosis in response to staurosporine or the anti-estrogen drug tamoxifen. Expression of wild-type but not GEF-inactive PREX1 increased anchorage-independent cell growth. In addition, mouse xenograft studies revealed that expression of wild-type but not GEF-dead PREX1 resulted in the formation of larger tumors that displayed increased phosphorylation of ERK1/2 but not AKT. The impaired anchorage-independent cell growth, apoptosis, and ERK1/2 signaling observed in stable PREX1 knockdown cells was restored by expression of wild-type but not GEF-dead-PREX1. Therefore, PREX1-Rac-GEF activity is critical for PREX1-dependent anchorage-independent cell growth and xenograft tumor growth and may represent a possible therapeutic target for breast cancers that exhibit PREX1 overexpression. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M116.743401 |