Proton-pump inhibitor omeprazole attenuates hyperoxia induced lung injury

The administration of supplemental oxygen to treat ventilatory insufficiency may lead to the formation of reactive oxygen species and subsequent tissue damage. Cytochrome P4501A1 (CYP1A1) can modulate hyperoxic lung injury by a currently unknown mechanism. Our objective was to evaluate the effect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of translational medicine 2016-08, Vol.14 (1), p.247, Article 247
Hauptverfasser: Richter, Jute, Jimenez, Julio, Nagatomo, Taro, Toelen, Jaan, Brady, Paul, Salaets, Thomas, Lesage, Flore, Vanoirbeek, Jeroen, Deprest, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The administration of supplemental oxygen to treat ventilatory insufficiency may lead to the formation of reactive oxygen species and subsequent tissue damage. Cytochrome P4501A1 (CYP1A1) can modulate hyperoxic lung injury by a currently unknown mechanism. Our objective was to evaluate the effect of administration of omeprazole on the induction of CYP1A1 and its influence on hyperoxic lung injury in an established preterm rabbit model. Omeprazole was administered either (1) directly to the fetus, (2) to the mother or (3) after birth to the pups in different doses (2-10 or 20 mg/kg). Controls were injected with the same amount of saline. Pups were housed in normoxia (21 %) or hyperoxia (>95 %) for 5 days. Outcome parameters were induction of CYP1A1 measured by real-time polymerase chain reaction (RT-PCR) immediately after delivery, at day 3 and day 5 as well as lung function, morphometry and immunohistochemistry assessed at day 5 of life. Transcriptome analysis was used to define the targeted pathways. Daily neonatal injections demonstrated a dose-dependent increase in CYP1A1. Lung function tests showed a significant improvement in tissue damping, tissue elasticity, total lung capacity, static compliance and elastance. Morphometry revealed a more developed lung architecture with thinned septae in animals treated with the highest dose (20 mg/kg) of omeprazole. Surfactant protein B, vascular endothelial growth factor and its receptor were significantly increased on immunohistochemical stainings after omeprazole treatment. Neonatal administration of omeprazole induces CYP1A1 in a dose-dependent matter and combined pre- and postnatal administration attenuates hyperoxic lung injury in preterm rabbits, even with the lowest dose of omeprazole without clear CYP1A1 induction.
ISSN:1479-5876
1479-5876
DOI:10.1186/s12967-016-1009-3