PET Imaging with [(18)F]FSPG Evidences the Role of System xc(-) on Brain Inflammation Following Cerebral Ischemia in Rats

In vivo Positron Emission Tomography (PET) imaging of the cystine-glutamate antiporter (system xc(-)) activity with [(18)F]FSPG is meant to be an attractive tool for the diagnosis and therapy evaluation of brain diseases. However, the role of system xc(-) in cerebral ischemia and its involvement in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theranostics 2016-01, Vol.6 (11), p.1753-1767
Hauptverfasser: Domercq, Maria, Szczupak, Boguslaw, Gejo, Jon, Gómez-Vallejo, Vanessa, Padro, Daniel, Gona, Kiran Babu, Dollé, Frédéric, Higuchi, Makoto, Matute, Carlos, Llop, Jordi, Martín, Abraham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vivo Positron Emission Tomography (PET) imaging of the cystine-glutamate antiporter (system xc(-)) activity with [(18)F]FSPG is meant to be an attractive tool for the diagnosis and therapy evaluation of brain diseases. However, the role of system xc(-) in cerebral ischemia and its involvement in inflammatory reaction has been scarcely explored. In this work, we report the longitudinal investigation of the neuroinflammatory process following transient middle cerebral artery occlusion (MCAO) in rats using PET with [(18)F]FSPG and the translocator protein (TSPO) ligand [(18)F]DPA-714. In the ischemic territory, [(18)F]FSPG showed a progressive binding increase that peaked at days 3 to 7 and was followed by a progressive decrease from days 14 to 28 after reperfusion. In contrast, [(18)F]DPA-714 evidenced maximum binding uptake values over day 7 after reperfusion. Ex vivo immnunohistochemistry confirmed the up-regulation of system xc(-) in microglial cells and marginally in astrocytes. Inhibition of system xc(-) with sulfasalazine and S-4-CPG resulted in increased arginase (anti-inflammatory M2 marker) expression at day 7 after ischemia, together with a decrease in TSPO and microglial M1 proinflammatory markers (CCL2, TNF and iNOS) expression. Taken together, these results suggest that system xc(-) plays a key role in the inflammatory reaction underlying experimental stroke.
ISSN:1838-7640
1838-7640
DOI:10.7150/thno.15616