Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation

Angiosperm genome sizes (GS) range c. 2400-fold, and as nucleic acids are amongst the most phosphorus- (P) and nitrogen (N)-demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2016-06, Vol.210 (4), p.1195-1206
Hauptverfasser: Guignard, Maïté S., Nichols, Richard A., Knell, Robert J., Macdonald, Andy, Romila, Catalina‐Andreea, Trimmer, Mark, Leitch, Ilia J., Leitch, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiosperm genome sizes (GS) range c. 2400-fold, and as nucleic acids are amongst the most phosphorus- (P) and nitrogen (N)-demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant GS. We analysed the impact of different nutrient regimes on above-ground biomass of angiosperm species with different GS, ploidy level and Grime's C-S-R (competitive, stresstolerant, ruderal) plant strategies growing at the Park Grass Experiment (Rothamsted, UK), established in 1856. The biomass-weighted mean GS of species growing on plots with the addition of both N and P fertilizer were significantly higher than that of plants growing on control plots and plots with either N or P. The plants on these N + P plots are dominated by polyploids with large GS and a competitive plant strategy. The results are consistent with our hypothesis that large genomes are costly to build and maintain under N and P limitation. Hence GS and ploidy are significant traits affecting biomass growth under different nutrient regimes, influencing plant community composition and ecosystem dynamics. We propose that GS is a critical factor needed in models that bridge the knowledge gap between biodiversity and ecosystem functioning.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.13881