Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition

Acute myeloid leukemia (AML) cells require BRD9 to regulate MYC gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of BRD9 limits AML cell growth. Here we show that acute myeloid leukem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2016-09, Vol.12 (9), p.672-679
Hauptverfasser: Hohmann, Anja F, Martin, Laetitia J, Minder, Jessica L, Roe, Jae-Seok, Shi, Junwei, Steurer, Steffen, Bader, Gerd, McConnell, Darryl, Pearson, Mark, Gerstberger, Thomas, Gottschamel, Teresa, Thompson, Diane, Suzuki, Yutaka, Koegl, Manfred, Vakoc, Christopher R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 679
container_issue 9
container_start_page 672
container_title Nature chemical biology
container_volume 12
creator Hohmann, Anja F
Martin, Laetitia J
Minder, Jessica L
Roe, Jae-Seok
Shi, Junwei
Steurer, Steffen
Bader, Gerd
McConnell, Darryl
Pearson, Mark
Gerstberger, Thomas
Gottschamel, Teresa
Thompson, Diane
Suzuki, Yutaka
Koegl, Manfred
Vakoc, Christopher R
description Acute myeloid leukemia (AML) cells require BRD9 to regulate MYC gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of BRD9 limits AML cell growth. Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2 . To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.
doi_str_mv 10.1038/nchembio.2115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4990482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4152082931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</originalsourceid><addsrcrecordid>eNptkc9LHDEYhoO0qLUevZZAL15mm0ySyeQiVO0PQRBsew6ZzJfd2JnEJjPC_vfNsrqoeEkC38OT7-VF6ISSBSWs_RLsCsbOx0VNqdhDh1SIuuK8Ue92b0EO0Iec7whhTUPbfXRQSyabplWH6PYXhOwn_-CnNTahxxCWPgAk6HGC7PNkggUcHR7XMETf4wHmvzB6gy0MQ8ZTxOe3lwr7sPJdEcXwEb13Zshw_HgfoT_fv_2--Fld3_y4uvh6XVneyqliPVDnuGiMEs5ZKzurmOucZMIZUnPaUiWk7DmzABQcIxZsz1rgqqOy7tgROtt67-duhN5CmJIZ9H3yo0lrHY3XLyfBr_QyPmiuFOFtXQSnj4IU_82QJz36vEllAsQ567KBkKQpR0E_v0Lv4pxCibehakEaQkWhqi1lU8w5gdstQ4netKWf2tKbtgr_6XmCHf1UTwEWWyCXUVhCevbtm8b_XwGj3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812506015</pqid></control><display><type>article</type><title>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Hohmann, Anja F ; Martin, Laetitia J ; Minder, Jessica L ; Roe, Jae-Seok ; Shi, Junwei ; Steurer, Steffen ; Bader, Gerd ; McConnell, Darryl ; Pearson, Mark ; Gerstberger, Thomas ; Gottschamel, Teresa ; Thompson, Diane ; Suzuki, Yutaka ; Koegl, Manfred ; Vakoc, Christopher R</creator><creatorcontrib>Hohmann, Anja F ; Martin, Laetitia J ; Minder, Jessica L ; Roe, Jae-Seok ; Shi, Junwei ; Steurer, Steffen ; Bader, Gerd ; McConnell, Darryl ; Pearson, Mark ; Gerstberger, Thomas ; Gottschamel, Teresa ; Thompson, Diane ; Suzuki, Yutaka ; Koegl, Manfred ; Vakoc, Christopher R</creatorcontrib><description>Acute myeloid leukemia (AML) cells require BRD9 to regulate MYC gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of BRD9 limits AML cell growth. Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2 . To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2115</identifier><identifier>PMID: 27376689</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/58 ; 13 ; 13/106 ; 13/109 ; 13/44 ; 38 ; 38/39 ; 631/337/572 ; 631/67/1059 ; 631/92/613 ; 631/92/93 ; Alleles ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Cell Differentiation - drug effects ; Cell Engineering ; Cell growth ; Cell Proliferation - drug effects ; Chemistry ; Chemistry/Food Science ; Dose-Response Relationship, Drug ; Drug Resistance, Neoplasm - drug effects ; Drug Screening Assays, Antitumor ; Gene expression ; Humans ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - metabolism ; Leukemia, Myeloid, Acute - pathology ; Mice ; Models, Molecular ; Molecular Structure ; Probes ; Structure-Activity Relationship ; Transcription factors ; Transcription Factors - antagonists &amp; inhibitors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature chemical biology, 2016-09, Vol.12 (9), p.672-679</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</citedby><cites>FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27376689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hohmann, Anja F</creatorcontrib><creatorcontrib>Martin, Laetitia J</creatorcontrib><creatorcontrib>Minder, Jessica L</creatorcontrib><creatorcontrib>Roe, Jae-Seok</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Steurer, Steffen</creatorcontrib><creatorcontrib>Bader, Gerd</creatorcontrib><creatorcontrib>McConnell, Darryl</creatorcontrib><creatorcontrib>Pearson, Mark</creatorcontrib><creatorcontrib>Gerstberger, Thomas</creatorcontrib><creatorcontrib>Gottschamel, Teresa</creatorcontrib><creatorcontrib>Thompson, Diane</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Koegl, Manfred</creatorcontrib><creatorcontrib>Vakoc, Christopher R</creatorcontrib><title>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Acute myeloid leukemia (AML) cells require BRD9 to regulate MYC gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of BRD9 limits AML cell growth. Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2 . To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.</description><subject>101/58</subject><subject>13</subject><subject>13/106</subject><subject>13/109</subject><subject>13/44</subject><subject>38</subject><subject>38/39</subject><subject>631/337/572</subject><subject>631/67/1059</subject><subject>631/92/613</subject><subject>631/92/93</subject><subject>Alleles</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Engineering</subject><subject>Cell growth</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Probes</subject><subject>Structure-Activity Relationship</subject><subject>Transcription factors</subject><subject>Transcription Factors - antagonists &amp; inhibitors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkc9LHDEYhoO0qLUevZZAL15mm0ySyeQiVO0PQRBsew6ZzJfd2JnEJjPC_vfNsrqoeEkC38OT7-VF6ISSBSWs_RLsCsbOx0VNqdhDh1SIuuK8Ue92b0EO0Iec7whhTUPbfXRQSyabplWH6PYXhOwn_-CnNTahxxCWPgAk6HGC7PNkggUcHR7XMETf4wHmvzB6gy0MQ8ZTxOe3lwr7sPJdEcXwEb13Zshw_HgfoT_fv_2--Fld3_y4uvh6XVneyqliPVDnuGiMEs5ZKzurmOucZMIZUnPaUiWk7DmzABQcIxZsz1rgqqOy7tgROtt67-duhN5CmJIZ9H3yo0lrHY3XLyfBr_QyPmiuFOFtXQSnj4IU_82QJz36vEllAsQ567KBkKQpR0E_v0Lv4pxCibehakEaQkWhqi1lU8w5gdstQ4netKWf2tKbtgr_6XmCHf1UTwEWWyCXUVhCevbtm8b_XwGj3A</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hohmann, Anja F</creator><creator>Martin, Laetitia J</creator><creator>Minder, Jessica L</creator><creator>Roe, Jae-Seok</creator><creator>Shi, Junwei</creator><creator>Steurer, Steffen</creator><creator>Bader, Gerd</creator><creator>McConnell, Darryl</creator><creator>Pearson, Mark</creator><creator>Gerstberger, Thomas</creator><creator>Gottschamel, Teresa</creator><creator>Thompson, Diane</creator><creator>Suzuki, Yutaka</creator><creator>Koegl, Manfred</creator><creator>Vakoc, Christopher R</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</title><author>Hohmann, Anja F ; Martin, Laetitia J ; Minder, Jessica L ; Roe, Jae-Seok ; Shi, Junwei ; Steurer, Steffen ; Bader, Gerd ; McConnell, Darryl ; Pearson, Mark ; Gerstberger, Thomas ; Gottschamel, Teresa ; Thompson, Diane ; Suzuki, Yutaka ; Koegl, Manfred ; Vakoc, Christopher R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>101/58</topic><topic>13</topic><topic>13/106</topic><topic>13/109</topic><topic>13/44</topic><topic>38</topic><topic>38/39</topic><topic>631/337/572</topic><topic>631/67/1059</topic><topic>631/92/613</topic><topic>631/92/93</topic><topic>Alleles</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Engineering</topic><topic>Cell growth</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Probes</topic><topic>Structure-Activity Relationship</topic><topic>Transcription factors</topic><topic>Transcription Factors - antagonists &amp; inhibitors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hohmann, Anja F</creatorcontrib><creatorcontrib>Martin, Laetitia J</creatorcontrib><creatorcontrib>Minder, Jessica L</creatorcontrib><creatorcontrib>Roe, Jae-Seok</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Steurer, Steffen</creatorcontrib><creatorcontrib>Bader, Gerd</creatorcontrib><creatorcontrib>McConnell, Darryl</creatorcontrib><creatorcontrib>Pearson, Mark</creatorcontrib><creatorcontrib>Gerstberger, Thomas</creatorcontrib><creatorcontrib>Gottschamel, Teresa</creatorcontrib><creatorcontrib>Thompson, Diane</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Koegl, Manfred</creatorcontrib><creatorcontrib>Vakoc, Christopher R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hohmann, Anja F</au><au>Martin, Laetitia J</au><au>Minder, Jessica L</au><au>Roe, Jae-Seok</au><au>Shi, Junwei</au><au>Steurer, Steffen</au><au>Bader, Gerd</au><au>McConnell, Darryl</au><au>Pearson, Mark</au><au>Gerstberger, Thomas</au><au>Gottschamel, Teresa</au><au>Thompson, Diane</au><au>Suzuki, Yutaka</au><au>Koegl, Manfred</au><au>Vakoc, Christopher R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>12</volume><issue>9</issue><spage>672</spage><epage>679</epage><pages>672-679</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Acute myeloid leukemia (AML) cells require BRD9 to regulate MYC gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of BRD9 limits AML cell growth. Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2 . To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27376689</pmid><doi>10.1038/nchembio.2115</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2016-09, Vol.12 (9), p.672-679
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4990482
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 101/58
13
13/106
13/109
13/44
38
38/39
631/337/572
631/67/1059
631/92/613
631/92/93
Alleles
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Cell Differentiation - drug effects
Cell Engineering
Cell growth
Cell Proliferation - drug effects
Chemistry
Chemistry/Food Science
Dose-Response Relationship, Drug
Drug Resistance, Neoplasm - drug effects
Drug Screening Assays, Antitumor
Gene expression
Humans
Leukemia
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - metabolism
Leukemia, Myeloid, Acute - pathology
Mice
Models, Molecular
Molecular Structure
Probes
Structure-Activity Relationship
Transcription factors
Transcription Factors - antagonists & inhibitors
Transcription Factors - genetics
Transcription Factors - metabolism
title Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20and%20engineered%20resistance%20of%20myeloid%20leukemia%20cells%20to%20BRD9%20inhibition&rft.jtitle=Nature%20chemical%20biology&rft.au=Hohmann,%20Anja%20F&rft.date=2016-09-01&rft.volume=12&rft.issue=9&rft.spage=672&rft.epage=679&rft.pages=672-679&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2115&rft_dat=%3Cproquest_pubme%3E4152082931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812506015&rft_id=info:pmid/27376689&rfr_iscdi=true