Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition
Acute myeloid leukemia (AML) cells require BRD9 to regulate MYC gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of BRD9 limits AML cell growth. Here we show that acute myeloid leukem...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2016-09, Vol.12 (9), p.672-679 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 679 |
---|---|
container_issue | 9 |
container_start_page | 672 |
container_title | Nature chemical biology |
container_volume | 12 |
creator | Hohmann, Anja F Martin, Laetitia J Minder, Jessica L Roe, Jae-Seok Shi, Junwei Steurer, Steffen Bader, Gerd McConnell, Darryl Pearson, Mark Gerstberger, Thomas Gottschamel, Teresa Thompson, Diane Suzuki, Yutaka Koegl, Manfred Vakoc, Christopher R |
description | Acute myeloid leukemia (AML) cells require BRD9 to regulate
MYC
gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of
BRD9
limits AML cell growth.
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain
MYC
transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of
BRD9
that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of
EZH2
. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells. |
doi_str_mv | 10.1038/nchembio.2115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4990482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4152082931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</originalsourceid><addsrcrecordid>eNptkc9LHDEYhoO0qLUevZZAL15mm0ySyeQiVO0PQRBsew6ZzJfd2JnEJjPC_vfNsrqoeEkC38OT7-VF6ISSBSWs_RLsCsbOx0VNqdhDh1SIuuK8Ue92b0EO0Iec7whhTUPbfXRQSyabplWH6PYXhOwn_-CnNTahxxCWPgAk6HGC7PNkggUcHR7XMETf4wHmvzB6gy0MQ8ZTxOe3lwr7sPJdEcXwEb13Zshw_HgfoT_fv_2--Fld3_y4uvh6XVneyqliPVDnuGiMEs5ZKzurmOucZMIZUnPaUiWk7DmzABQcIxZsz1rgqqOy7tgROtt67-duhN5CmJIZ9H3yo0lrHY3XLyfBr_QyPmiuFOFtXQSnj4IU_82QJz36vEllAsQ567KBkKQpR0E_v0Lv4pxCibehakEaQkWhqi1lU8w5gdstQ4netKWf2tKbtgr_6XmCHf1UTwEWWyCXUVhCevbtm8b_XwGj3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812506015</pqid></control><display><type>article</type><title>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Hohmann, Anja F ; Martin, Laetitia J ; Minder, Jessica L ; Roe, Jae-Seok ; Shi, Junwei ; Steurer, Steffen ; Bader, Gerd ; McConnell, Darryl ; Pearson, Mark ; Gerstberger, Thomas ; Gottschamel, Teresa ; Thompson, Diane ; Suzuki, Yutaka ; Koegl, Manfred ; Vakoc, Christopher R</creator><creatorcontrib>Hohmann, Anja F ; Martin, Laetitia J ; Minder, Jessica L ; Roe, Jae-Seok ; Shi, Junwei ; Steurer, Steffen ; Bader, Gerd ; McConnell, Darryl ; Pearson, Mark ; Gerstberger, Thomas ; Gottschamel, Teresa ; Thompson, Diane ; Suzuki, Yutaka ; Koegl, Manfred ; Vakoc, Christopher R</creatorcontrib><description>Acute myeloid leukemia (AML) cells require BRD9 to regulate
MYC
gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of
BRD9
limits AML cell growth.
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain
MYC
transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of
BRD9
that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of
EZH2
. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2115</identifier><identifier>PMID: 27376689</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/58 ; 13 ; 13/106 ; 13/109 ; 13/44 ; 38 ; 38/39 ; 631/337/572 ; 631/67/1059 ; 631/92/613 ; 631/92/93 ; Alleles ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Cell Differentiation - drug effects ; Cell Engineering ; Cell growth ; Cell Proliferation - drug effects ; Chemistry ; Chemistry/Food Science ; Dose-Response Relationship, Drug ; Drug Resistance, Neoplasm - drug effects ; Drug Screening Assays, Antitumor ; Gene expression ; Humans ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - metabolism ; Leukemia, Myeloid, Acute - pathology ; Mice ; Models, Molecular ; Molecular Structure ; Probes ; Structure-Activity Relationship ; Transcription factors ; Transcription Factors - antagonists & inhibitors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature chemical biology, 2016-09, Vol.12 (9), p.672-679</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</citedby><cites>FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27376689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hohmann, Anja F</creatorcontrib><creatorcontrib>Martin, Laetitia J</creatorcontrib><creatorcontrib>Minder, Jessica L</creatorcontrib><creatorcontrib>Roe, Jae-Seok</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Steurer, Steffen</creatorcontrib><creatorcontrib>Bader, Gerd</creatorcontrib><creatorcontrib>McConnell, Darryl</creatorcontrib><creatorcontrib>Pearson, Mark</creatorcontrib><creatorcontrib>Gerstberger, Thomas</creatorcontrib><creatorcontrib>Gottschamel, Teresa</creatorcontrib><creatorcontrib>Thompson, Diane</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Koegl, Manfred</creatorcontrib><creatorcontrib>Vakoc, Christopher R</creatorcontrib><title>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Acute myeloid leukemia (AML) cells require BRD9 to regulate
MYC
gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of
BRD9
limits AML cell growth.
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain
MYC
transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of
BRD9
that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of
EZH2
. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.</description><subject>101/58</subject><subject>13</subject><subject>13/106</subject><subject>13/109</subject><subject>13/44</subject><subject>38</subject><subject>38/39</subject><subject>631/337/572</subject><subject>631/67/1059</subject><subject>631/92/613</subject><subject>631/92/93</subject><subject>Alleles</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Engineering</subject><subject>Cell growth</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Probes</subject><subject>Structure-Activity Relationship</subject><subject>Transcription factors</subject><subject>Transcription Factors - antagonists & inhibitors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkc9LHDEYhoO0qLUevZZAL15mm0ySyeQiVO0PQRBsew6ZzJfd2JnEJjPC_vfNsrqoeEkC38OT7-VF6ISSBSWs_RLsCsbOx0VNqdhDh1SIuuK8Ue92b0EO0Iec7whhTUPbfXRQSyabplWH6PYXhOwn_-CnNTahxxCWPgAk6HGC7PNkggUcHR7XMETf4wHmvzB6gy0MQ8ZTxOe3lwr7sPJdEcXwEb13Zshw_HgfoT_fv_2--Fld3_y4uvh6XVneyqliPVDnuGiMEs5ZKzurmOucZMIZUnPaUiWk7DmzABQcIxZsz1rgqqOy7tgROtt67-duhN5CmJIZ9H3yo0lrHY3XLyfBr_QyPmiuFOFtXQSnj4IU_82QJz36vEllAsQ567KBkKQpR0E_v0Lv4pxCibehakEaQkWhqi1lU8w5gdstQ4netKWf2tKbtgr_6XmCHf1UTwEWWyCXUVhCevbtm8b_XwGj3A</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hohmann, Anja F</creator><creator>Martin, Laetitia J</creator><creator>Minder, Jessica L</creator><creator>Roe, Jae-Seok</creator><creator>Shi, Junwei</creator><creator>Steurer, Steffen</creator><creator>Bader, Gerd</creator><creator>McConnell, Darryl</creator><creator>Pearson, Mark</creator><creator>Gerstberger, Thomas</creator><creator>Gottschamel, Teresa</creator><creator>Thompson, Diane</creator><creator>Suzuki, Yutaka</creator><creator>Koegl, Manfred</creator><creator>Vakoc, Christopher R</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</title><author>Hohmann, Anja F ; Martin, Laetitia J ; Minder, Jessica L ; Roe, Jae-Seok ; Shi, Junwei ; Steurer, Steffen ; Bader, Gerd ; McConnell, Darryl ; Pearson, Mark ; Gerstberger, Thomas ; Gottschamel, Teresa ; Thompson, Diane ; Suzuki, Yutaka ; Koegl, Manfred ; Vakoc, Christopher R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-3de1ff456a95ffcc7bc93fbf735fa0241819577d43cee1ef30cecd38e49b172b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>101/58</topic><topic>13</topic><topic>13/106</topic><topic>13/109</topic><topic>13/44</topic><topic>38</topic><topic>38/39</topic><topic>631/337/572</topic><topic>631/67/1059</topic><topic>631/92/613</topic><topic>631/92/93</topic><topic>Alleles</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Engineering</topic><topic>Cell growth</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Probes</topic><topic>Structure-Activity Relationship</topic><topic>Transcription factors</topic><topic>Transcription Factors - antagonists & inhibitors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hohmann, Anja F</creatorcontrib><creatorcontrib>Martin, Laetitia J</creatorcontrib><creatorcontrib>Minder, Jessica L</creatorcontrib><creatorcontrib>Roe, Jae-Seok</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Steurer, Steffen</creatorcontrib><creatorcontrib>Bader, Gerd</creatorcontrib><creatorcontrib>McConnell, Darryl</creatorcontrib><creatorcontrib>Pearson, Mark</creatorcontrib><creatorcontrib>Gerstberger, Thomas</creatorcontrib><creatorcontrib>Gottschamel, Teresa</creatorcontrib><creatorcontrib>Thompson, Diane</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Koegl, Manfred</creatorcontrib><creatorcontrib>Vakoc, Christopher R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hohmann, Anja F</au><au>Martin, Laetitia J</au><au>Minder, Jessica L</au><au>Roe, Jae-Seok</au><au>Shi, Junwei</au><au>Steurer, Steffen</au><au>Bader, Gerd</au><au>McConnell, Darryl</au><au>Pearson, Mark</au><au>Gerstberger, Thomas</au><au>Gottschamel, Teresa</au><au>Thompson, Diane</au><au>Suzuki, Yutaka</au><au>Koegl, Manfred</au><au>Vakoc, Christopher R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>12</volume><issue>9</issue><spage>672</spage><epage>679</epage><pages>672-679</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Acute myeloid leukemia (AML) cells require BRD9 to regulate
MYC
gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of
BRD9
limits AML cell growth.
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain
MYC
transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of
BRD9
that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of
EZH2
. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27376689</pmid><doi>10.1038/nchembio.2115</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2016-09, Vol.12 (9), p.672-679 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4990482 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 101/58 13 13/106 13/109 13/44 38 38/39 631/337/572 631/67/1059 631/92/613 631/92/93 Alleles Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Biochemical Engineering Biochemistry Bioorganic Chemistry Cell Biology Cell Differentiation - drug effects Cell Engineering Cell growth Cell Proliferation - drug effects Chemistry Chemistry/Food Science Dose-Response Relationship, Drug Drug Resistance, Neoplasm - drug effects Drug Screening Assays, Antitumor Gene expression Humans Leukemia Leukemia, Myeloid, Acute - drug therapy Leukemia, Myeloid, Acute - metabolism Leukemia, Myeloid, Acute - pathology Mice Models, Molecular Molecular Structure Probes Structure-Activity Relationship Transcription factors Transcription Factors - antagonists & inhibitors Transcription Factors - genetics Transcription Factors - metabolism |
title | Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20and%20engineered%20resistance%20of%20myeloid%20leukemia%20cells%20to%20BRD9%20inhibition&rft.jtitle=Nature%20chemical%20biology&rft.au=Hohmann,%20Anja%20F&rft.date=2016-09-01&rft.volume=12&rft.issue=9&rft.spage=672&rft.epage=679&rft.pages=672-679&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2115&rft_dat=%3Cproquest_pubme%3E4152082931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812506015&rft_id=info:pmid/27376689&rfr_iscdi=true |