Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition
Acute myeloid leukemia (AML) cells require BRD9 to regulate MYC gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of BRD9 limits AML cell growth. Here we show that acute myeloid leukem...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2016-09, Vol.12 (9), p.672-679 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acute myeloid leukemia (AML) cells require BRD9 to regulate
MYC
gene expression and prevent myeloid differentiation. Selective inhibition of BRD9 using a chemical probe that was validated using a resistant bromodomain-swap allele of
BRD9
limits AML cell growth.
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI−SNF chromatin-remodeling complex to sustain
MYC
transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of
BRD9
that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of
EZH2
. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells. |
---|---|
ISSN: | 1552-4450 1552-4469 |
DOI: | 10.1038/nchembio.2115 |