Effects of climate warming on plant autotoxicity in forest evolution: a case simulation analysis for Picea schrenkiana regeneration

In order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data‐monitored soil temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology and evolution 2016-08, Vol.6 (16), p.5854-5866
Hauptverfasser: Ruan, Xiao, Pan, Cun‐De, Liu, Run, Li, Zhao‐Hui, LI, Shu‐Ling, Jiang, De‐An, Zhang, Jing‐Chi, Wang, Geoff, Zhao, Yin‐Xian, Wang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data‐monitored soil temperature during the last decade in the stage of Schrenk spruce regeneration (seed germination and seedling growth). The results showed that the criterion day and night temperatures were 12°C and 4°C for seed germination, and 14°C and 6°C for seedling growth, respectively. In the presence of water extract, the temperature rise of 2°C significantly inhibited the germination vigor and rate of P. Schrenkiana seed, and a temperature rise of 4°C significantly increased the inhibition to the seedling growth (P 
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.2315