Models for Predicting Stage in Head and Neck Squamous Cell Carcinoma Using Proteomic and Transcriptomic Data

Late diagnosis is one of the reasons that head and neck squamous cell carcinoma (HNSCC) patients experience relative five-year survival rates ranging from 40%-66%. The molecular-level differences between early and advanced stage HNSCC may provide insight into therapeutic targets and strategies. Prev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2017-01, Vol.21 (1), p.246-253
Hauptverfasser: Kaddi, Chanchala D., Wang, May D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Late diagnosis is one of the reasons that head and neck squamous cell carcinoma (HNSCC) patients experience relative five-year survival rates ranging from 40%-66%. The molecular-level differences between early and advanced stage HNSCC may provide insight into therapeutic targets and strategies. Previous bioinformatics studies have shown mixed or limited results in identifying gene and protein markers and in developing models for discriminating between early and advanced stage HNSCC. Thus, we have investigated models for HNSCC stage prediction using RNAseq and reverse phase protein array data from The Cancer Genome Atlas and The Cancer Proteome Atlas. We systematically assessed individual and ensemble binary classifiers, using filter and wrapper feature selection methods, to develop several well-performing models. In particular, integrated models harnessing both data types consistently resulted in better performance. This study identifies informative protein and gene feature sets which may increase understanding of HNSCC progression.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2015.2489158