The active site of O-GlcNAc transferase imposes constraints on substrate sequence
O-GlcNAcylation is a post-translational modification catalyzed by O-GlcNAc transferase. Here, a high-throughput activity assay combined with mass spectrometric and crystallographic analyses sheds light on the substrate recognition and specificity of O-GlcNAc transferase. O-GlcNAc transferase (OGT) g...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2015-09, Vol.22 (9), p.744-750 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | O-GlcNAcylation is a post-translational modification catalyzed by O-GlcNAc transferase. Here, a high-throughput activity assay combined with mass spectrometric and crystallographic analyses sheds light on the substrate recognition and specificity of O-GlcNAc transferase.
O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked
N
-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoans. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay to a library of peptides. We mapped sites of O-GlcNAc modification by electron transfer dissociation MS and found that they correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with
Homo sapiens
OGT suggest that a combination of size and conformational restriction defines sequence specificity in the −3 to +2 subsites. This work reveals that although the N-terminal TPR repeats of OGT may have roles in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a substantial contribution to O-GlcNAc site specificity. |
---|---|
ISSN: | 1545-9993 1545-9985 |
DOI: | 10.1038/nsmb.3063 |