Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice

Alterations in the gut microbiota play a crucial role in host physiology and metabolism; however, the molecular pathways underlying these changes in diet-induced obesity are unclear. Mechanistic target of rapamycin (mTOR) signaling pathway is associated with metabolic disorders such as obesity and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-07, Vol.6 (1), p.30887-30887, Article 30887
Hauptverfasser: Jung, Mi-Ja, Lee, Jina, Shin, Na-Ri, Kim, Min-Soo, Hyun, Dong-Wook, Yun, Ji-Hyun, Kim, Pil Soo, Whon, Tae Woong, Bae, Jin-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alterations in the gut microbiota play a crucial role in host physiology and metabolism; however, the molecular pathways underlying these changes in diet-induced obesity are unclear. Mechanistic target of rapamycin (mTOR) signaling pathway is associated with metabolic disorders such as obesity and type 2 diabetes (T2D). Therefore, we examined whether changes in the regulation of mTOR signaling induced by diet (a high-fat diet [HFD] or normal-chow diet) and/or therapeutics (resveratrol [a specific inhibitor of mTOR complex 1] or rapamycin [an inhibitor of both mTOR complex 1 and 2]) altered the composition of the gut microbiota in mice. Oral administration of resveratrol prevented glucose intolerance and fat accumulation in HFD-fed mice, whereas rapamycin significantly impaired glucose tolerance and exacerbated intestinal inflammation. The abundance of Lactococcus , Clostridium XI, Oscillibacter , and Hydrogenoanaerobacterium increased under the HFD condition; however, the abundance of these species declined after resveratrol treatment. Conversely, the abundance of unclassified Marinilabiliaceae and Turicibacter decreased in response to a HFD or rapamycin. Taken together, these results demonstrated that changes in the composition of intestinal microbiota induced by changes in mTOR activity correlate with obese and diabetic phenotypes.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep30887