Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway

OBJECTIVE—Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2016-08, Vol.36 (8), p.1549-1557
Hauptverfasser: Wu, Hongxian, Cheng, Xian Wu, Hu, Lina, Takeshita, Kyosuke, Hu, Chen, Du, Qiuna, Li, Xiang, Zhu, Enbo, Huang, Zhe, Yisireyili, Maimaiti, Zhao, Guangxian, Piao, Limei, Inoue, Aiko, Jiang, Haiying, Lei, Yanna, Zhang, Xiaohong, Liu, Shaowen, Dai, Qiuyan, Kuzuya, Masafumi, Shi, Guo-Ping, Murohara, Toyoaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1557
container_issue 8
container_start_page 1549
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 36
creator Wu, Hongxian
Cheng, Xian Wu
Hu, Lina
Takeshita, Kyosuke
Hu, Chen
Du, Qiuna
Li, Xiang
Zhu, Enbo
Huang, Zhe
Yisireyili, Maimaiti
Zhao, Guangxian
Piao, Limei
Inoue, Aiko
Jiang, Haiying
Lei, Yanna
Zhang, Xiaohong
Liu, Shaowen
Dai, Qiuyan
Kuzuya, Masafumi
Shi, Guo-Ping
Murohara, Toyoaki
description OBJECTIVE—Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. APPROACH AND RESULTS—Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. CONCLUSIONS—This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are involved in neointimal lesion formation.
doi_str_mv 10.1161/ATVBAHA.115.307110
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4961274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1807878095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4980-54bf10ddfc716c2e0bb6905bf096486d399a0abac2472f1375bd620fde8d3eaa3</originalsourceid><addsrcrecordid>eNp9kc-O0zAQxiMEYpeFF-CAfOSSXdtxnOSCFMKfVtuKqlv2ak1sp_WumwQ7adU3QOLGI_IkGFpWcOE0M_Lv-2asL4peEnxJCCdX5er2bTkpw5BeJjgjBD-KzklKWcx4wh-HHmdFnHJGz6Jn3t9hjBml-Gl0RrOEpwzz8-hbBcNG99606AaVcjA7MxxQ1bWD66xH0_ZudId4qS0MWqFb8HK04NBS92AcCqq5kRrtDKBgg1azJY3nWpnfdJ_k83JxjaBVaDFNrn98_V7eD1d9PHlXVhzdmHUL1rRrtAg37OHwPHrSgPX6xaleRJ8_vF9Vk3j26eO0KmexZEWO45TVDcFKNTIjXFKN65oXOK0bXHCWc5UUBWCoQVKW0YYkWVorTnGjdK4SDZBcRG-Ovv1Yb7WSOnwWrOid2YI7iA6M-PelNRux7naCFZzQjAWD1ycD130ZtR_E1niprYVWd6MXJMdZnuW4SANKj6h0nfdONw9rCBa_UhSnFMOQimOKQfTq7wMfJH9iCwA_AvvODtr5ezvutRMbDXbY_M_5J40FqzM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807878095</pqid></control><display><type>article</type><title>Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, Hongxian ; Cheng, Xian Wu ; Hu, Lina ; Takeshita, Kyosuke ; Hu, Chen ; Du, Qiuna ; Li, Xiang ; Zhu, Enbo ; Huang, Zhe ; Yisireyili, Maimaiti ; Zhao, Guangxian ; Piao, Limei ; Inoue, Aiko ; Jiang, Haiying ; Lei, Yanna ; Zhang, Xiaohong ; Liu, Shaowen ; Dai, Qiuyan ; Kuzuya, Masafumi ; Shi, Guo-Ping ; Murohara, Toyoaki</creator><creatorcontrib>Wu, Hongxian ; Cheng, Xian Wu ; Hu, Lina ; Takeshita, Kyosuke ; Hu, Chen ; Du, Qiuna ; Li, Xiang ; Zhu, Enbo ; Huang, Zhe ; Yisireyili, Maimaiti ; Zhao, Guangxian ; Piao, Limei ; Inoue, Aiko ; Jiang, Haiying ; Lei, Yanna ; Zhang, Xiaohong ; Liu, Shaowen ; Dai, Qiuyan ; Kuzuya, Masafumi ; Shi, Guo-Ping ; Murohara, Toyoaki</creatorcontrib><description>OBJECTIVE—Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. APPROACH AND RESULTS—Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. CONCLUSIONS—This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are involved in neointimal lesion formation.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.115.307110</identifier><identifier>PMID: 27365406</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Animals ; Basic Sciences ; Carotid Artery Injuries - enzymology ; Carotid Artery Injuries - genetics ; Carotid Artery Injuries - pathology ; Carotid Artery, Common - drug effects ; Carotid Artery, Common - enzymology ; Carotid Artery, Common - pathology ; Cathepsins - antagonists &amp; inhibitors ; Cathepsins - deficiency ; Cathepsins - genetics ; Cathepsins - metabolism ; Cell Cycle Checkpoints ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Disease Models, Animal ; Genotype ; Histone Deacetylase 6 ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Male ; Mice, Knockout ; Muscle, Smooth, Vascular - enzymology ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - enzymology ; Myocytes, Smooth Muscle - pathology ; Neointima ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phenotype ; Phosphatidylinositol 3-Kinase - metabolism ; Phosphorylation ; Protease Inhibitors - pharmacology ; Proto-Oncogene Proteins c-akt - metabolism ; RNA Interference ; Signal Transduction ; Toll-Like Receptor 2 - genetics ; Toll-Like Receptor 2 - metabolism ; Transfection ; Vascular Remodeling ; Wound Healing - drug effects</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2016-08, Vol.36 (8), p.1549-1557</ispartof><rights>2016 American Heart Association, Inc.</rights><rights>2016 The Authors.</rights><rights>2016 The Authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4980-54bf10ddfc716c2e0bb6905bf096486d399a0abac2472f1375bd620fde8d3eaa3</citedby><cites>FETCH-LOGICAL-c4980-54bf10ddfc716c2e0bb6905bf096486d399a0abac2472f1375bd620fde8d3eaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27365406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Hongxian</creatorcontrib><creatorcontrib>Cheng, Xian Wu</creatorcontrib><creatorcontrib>Hu, Lina</creatorcontrib><creatorcontrib>Takeshita, Kyosuke</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Du, Qiuna</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Huang, Zhe</creatorcontrib><creatorcontrib>Yisireyili, Maimaiti</creatorcontrib><creatorcontrib>Zhao, Guangxian</creatorcontrib><creatorcontrib>Piao, Limei</creatorcontrib><creatorcontrib>Inoue, Aiko</creatorcontrib><creatorcontrib>Jiang, Haiying</creatorcontrib><creatorcontrib>Lei, Yanna</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Liu, Shaowen</creatorcontrib><creatorcontrib>Dai, Qiuyan</creatorcontrib><creatorcontrib>Kuzuya, Masafumi</creatorcontrib><creatorcontrib>Shi, Guo-Ping</creatorcontrib><creatorcontrib>Murohara, Toyoaki</creatorcontrib><title>Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. APPROACH AND RESULTS—Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. CONCLUSIONS—This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are involved in neointimal lesion formation.</description><subject>Animals</subject><subject>Basic Sciences</subject><subject>Carotid Artery Injuries - enzymology</subject><subject>Carotid Artery Injuries - genetics</subject><subject>Carotid Artery Injuries - pathology</subject><subject>Carotid Artery, Common - drug effects</subject><subject>Carotid Artery, Common - enzymology</subject><subject>Carotid Artery, Common - pathology</subject><subject>Cathepsins - antagonists &amp; inhibitors</subject><subject>Cathepsins - deficiency</subject><subject>Cathepsins - genetics</subject><subject>Cathepsins - metabolism</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Genotype</subject><subject>Histone Deacetylase 6</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Male</subject><subject>Mice, Knockout</subject><subject>Muscle, Smooth, Vascular - enzymology</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - enzymology</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Neointima</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phenotype</subject><subject>Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Phosphorylation</subject><subject>Protease Inhibitors - pharmacology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>RNA Interference</subject><subject>Signal Transduction</subject><subject>Toll-Like Receptor 2 - genetics</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Transfection</subject><subject>Vascular Remodeling</subject><subject>Wound Healing - drug effects</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc-O0zAQxiMEYpeFF-CAfOSSXdtxnOSCFMKfVtuKqlv2ak1sp_WumwQ7adU3QOLGI_IkGFpWcOE0M_Lv-2asL4peEnxJCCdX5er2bTkpw5BeJjgjBD-KzklKWcx4wh-HHmdFnHJGz6Jn3t9hjBml-Gl0RrOEpwzz8-hbBcNG99606AaVcjA7MxxQ1bWD66xH0_ZudId4qS0MWqFb8HK04NBS92AcCqq5kRrtDKBgg1azJY3nWpnfdJ_k83JxjaBVaDFNrn98_V7eD1d9PHlXVhzdmHUL1rRrtAg37OHwPHrSgPX6xaleRJ8_vF9Vk3j26eO0KmexZEWO45TVDcFKNTIjXFKN65oXOK0bXHCWc5UUBWCoQVKW0YYkWVorTnGjdK4SDZBcRG-Ovv1Yb7WSOnwWrOid2YI7iA6M-PelNRux7naCFZzQjAWD1ycD130ZtR_E1niprYVWd6MXJMdZnuW4SANKj6h0nfdONw9rCBa_UhSnFMOQimOKQfTq7wMfJH9iCwA_AvvODtr5ezvutRMbDXbY_M_5J40FqzM</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Wu, Hongxian</creator><creator>Cheng, Xian Wu</creator><creator>Hu, Lina</creator><creator>Takeshita, Kyosuke</creator><creator>Hu, Chen</creator><creator>Du, Qiuna</creator><creator>Li, Xiang</creator><creator>Zhu, Enbo</creator><creator>Huang, Zhe</creator><creator>Yisireyili, Maimaiti</creator><creator>Zhao, Guangxian</creator><creator>Piao, Limei</creator><creator>Inoue, Aiko</creator><creator>Jiang, Haiying</creator><creator>Lei, Yanna</creator><creator>Zhang, Xiaohong</creator><creator>Liu, Shaowen</creator><creator>Dai, Qiuyan</creator><creator>Kuzuya, Masafumi</creator><creator>Shi, Guo-Ping</creator><creator>Murohara, Toyoaki</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201608</creationdate><title>Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway</title><author>Wu, Hongxian ; Cheng, Xian Wu ; Hu, Lina ; Takeshita, Kyosuke ; Hu, Chen ; Du, Qiuna ; Li, Xiang ; Zhu, Enbo ; Huang, Zhe ; Yisireyili, Maimaiti ; Zhao, Guangxian ; Piao, Limei ; Inoue, Aiko ; Jiang, Haiying ; Lei, Yanna ; Zhang, Xiaohong ; Liu, Shaowen ; Dai, Qiuyan ; Kuzuya, Masafumi ; Shi, Guo-Ping ; Murohara, Toyoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4980-54bf10ddfc716c2e0bb6905bf096486d399a0abac2472f1375bd620fde8d3eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Basic Sciences</topic><topic>Carotid Artery Injuries - enzymology</topic><topic>Carotid Artery Injuries - genetics</topic><topic>Carotid Artery Injuries - pathology</topic><topic>Carotid Artery, Common - drug effects</topic><topic>Carotid Artery, Common - enzymology</topic><topic>Carotid Artery, Common - pathology</topic><topic>Cathepsins - antagonists &amp; inhibitors</topic><topic>Cathepsins - deficiency</topic><topic>Cathepsins - genetics</topic><topic>Cathepsins - metabolism</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Genotype</topic><topic>Histone Deacetylase 6</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Male</topic><topic>Mice, Knockout</topic><topic>Muscle, Smooth, Vascular - enzymology</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - enzymology</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Neointima</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phenotype</topic><topic>Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Phosphorylation</topic><topic>Protease Inhibitors - pharmacology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>RNA Interference</topic><topic>Signal Transduction</topic><topic>Toll-Like Receptor 2 - genetics</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Transfection</topic><topic>Vascular Remodeling</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hongxian</creatorcontrib><creatorcontrib>Cheng, Xian Wu</creatorcontrib><creatorcontrib>Hu, Lina</creatorcontrib><creatorcontrib>Takeshita, Kyosuke</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Du, Qiuna</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Huang, Zhe</creatorcontrib><creatorcontrib>Yisireyili, Maimaiti</creatorcontrib><creatorcontrib>Zhao, Guangxian</creatorcontrib><creatorcontrib>Piao, Limei</creatorcontrib><creatorcontrib>Inoue, Aiko</creatorcontrib><creatorcontrib>Jiang, Haiying</creatorcontrib><creatorcontrib>Lei, Yanna</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Liu, Shaowen</creatorcontrib><creatorcontrib>Dai, Qiuyan</creatorcontrib><creatorcontrib>Kuzuya, Masafumi</creatorcontrib><creatorcontrib>Shi, Guo-Ping</creatorcontrib><creatorcontrib>Murohara, Toyoaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hongxian</au><au>Cheng, Xian Wu</au><au>Hu, Lina</au><au>Takeshita, Kyosuke</au><au>Hu, Chen</au><au>Du, Qiuna</au><au>Li, Xiang</au><au>Zhu, Enbo</au><au>Huang, Zhe</au><au>Yisireyili, Maimaiti</au><au>Zhao, Guangxian</au><au>Piao, Limei</au><au>Inoue, Aiko</au><au>Jiang, Haiying</au><au>Lei, Yanna</au><au>Zhang, Xiaohong</au><au>Liu, Shaowen</au><au>Dai, Qiuyan</au><au>Kuzuya, Masafumi</au><au>Shi, Guo-Ping</au><au>Murohara, Toyoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2016-08</date><risdate>2016</risdate><volume>36</volume><issue>8</issue><spage>1549</spage><epage>1557</epage><pages>1549-1557</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE—Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. APPROACH AND RESULTS—Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. CONCLUSIONS—This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are involved in neointimal lesion formation.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>27365406</pmid><doi>10.1161/ATVBAHA.115.307110</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2016-08, Vol.36 (8), p.1549-1557
issn 1079-5642
1524-4636
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4961274
source MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Animals
Basic Sciences
Carotid Artery Injuries - enzymology
Carotid Artery Injuries - genetics
Carotid Artery Injuries - pathology
Carotid Artery, Common - drug effects
Carotid Artery, Common - enzymology
Carotid Artery, Common - pathology
Cathepsins - antagonists & inhibitors
Cathepsins - deficiency
Cathepsins - genetics
Cathepsins - metabolism
Cell Cycle Checkpoints
Cell Movement
Cell Proliferation
Cells, Cultured
Disease Models, Animal
Genotype
Histone Deacetylase 6
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Male
Mice, Knockout
Muscle, Smooth, Vascular - enzymology
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - enzymology
Myocytes, Smooth Muscle - pathology
Neointima
p38 Mitogen-Activated Protein Kinases - metabolism
Phenotype
Phosphatidylinositol 3-Kinase - metabolism
Phosphorylation
Protease Inhibitors - pharmacology
Proto-Oncogene Proteins c-akt - metabolism
RNA Interference
Signal Transduction
Toll-Like Receptor 2 - genetics
Toll-Like Receptor 2 - metabolism
Transfection
Vascular Remodeling
Wound Healing - drug effects
title Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathepsin%20S%20Activity%20Controls%20Injury-Related%20Vascular%20Repair%20in%20Mice%20via%20the%20TLR2-Mediated%20p38MAPK%20and%20PI3K%E2%88%92Akt/p-HDAC6%20Signaling%20Pathway&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Wu,%20Hongxian&rft.date=2016-08&rft.volume=36&rft.issue=8&rft.spage=1549&rft.epage=1557&rft.pages=1549-1557&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.115.307110&rft_dat=%3Cproquest_pubme%3E1807878095%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807878095&rft_id=info:pmid/27365406&rfr_iscdi=true