Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway
OBJECTIVE—Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types...
Gespeichert in:
Veröffentlicht in: | Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2016-08, Vol.36 (8), p.1549-1557 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OBJECTIVE—Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice.
APPROACH AND RESULTS—Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation.
CONCLUSIONS—This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are involved in neointimal lesion formation. |
---|---|
ISSN: | 1079-5642 1524-4636 |
DOI: | 10.1161/ATVBAHA.115.307110 |