Methyl group donors abrogate adaptive responses to dietary restriction in C. elegans
BACKGROUND: Almost all animals adapt to dietary restriction through alternative life history traits that affect their growth, reproduction, and survival. Economized management of fat stores is a prevalent type of such adaptations. Because one-carbon metabolism is a critical gauge of food availabilit...
Gespeichert in:
Veröffentlicht in: | Genes & nutrition 2016, Vol.11 (1), p.4-4, Article 4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND: Almost all animals adapt to dietary restriction through alternative life history traits that affect their growth, reproduction, and survival. Economized management of fat stores is a prevalent type of such adaptations. Because one-carbon metabolism is a critical gauge of food availability, in this study, we used Caenorhabditis elegans to test whether the methyl group donor choline regulates adaptive responses to dietary restriction. We used a modest dietary restriction regimen that prolonged the fecund period without reducing the lifetime production of progeny, which is the best measure of fitness. RESULTS: We found that dietary supplementation with choline abrogate the dietary restriction-induced prolongation of the reproductive period as well as the accumulation and delayed depletion of large lipid droplets and whole-fat stores and increased the survival rate in the cold. By contrast, the life span-prolonging effect of dietary restriction is not affected by choline. Moreover, we found that dietary restriction led to the enlargement of lipid droplets within embryos and enhancement of the cold tolerance of the progeny of dietarily restricted mothers. Both of these transgenerational responses to maternal dietary restriction were abrogated by exposing the parental generation to choline. CONCLUSIONS: In conclusion, supplementation with the methyl group donor choline abrogates distinct responses to dietary restriction related to reproduction, utilization of fat stored in large lipid droplets, cold tolerance, and thrifty phenotypes in C. elegans. |
---|---|
ISSN: | 1555-8932 1865-3499 |
DOI: | 10.1186/s12263-016-0522-4 |