Green superlubricity of Nitinol 60 alloy against steel in presence of castor oil

In the present work, first, we show that sliding Nitinol 60 alloy against steel under castor oil lubrication exhibits a new case of superlubricity (coefficient of friction CoF ≪ 0.01). So far, CoF below 0.01 have never been achieved under boundary lubrication at high contact pressure and in presence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-07, Vol.6 (1), p.29992-29992, Article 29992
Hauptverfasser: Zeng, Qunfeng, Dong, Guangneng, Martin, Jean Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, first, we show that sliding Nitinol 60 alloy against steel under castor oil lubrication exhibits a new case of superlubricity (coefficient of friction CoF ≪ 0.01). So far, CoF below 0.01 have never been achieved under boundary lubrication at high contact pressure and in presence of vegetable oil as a green lubricant. Next, it is demonstrated that superlubricity is controlled by tribochemical reactions, involving chemical degradation of castor oil and the formation of metal oxy-hydroxides. Finally, to explain these findings, we propose a novel superlubricity mechanism consisting of hexanoic acid molecules intercalated between nickel and iron oxy-hydroxide lamellar layers, a structure very similar to the one found in Fe-Ni batteries. We propose that superlubricity is achieved due to repulsive electrostatic forces acting between the intercalated metal oxy-hydroxide lamellar compounds. This system would be suitable for practical engineering applications in many fields including biotechnologies.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep29992