Retinal Axon Guidance Requires Integration of Eya and the Jak/Stat Pathway into Phosphotyrosine-Based Signaling Circuitries in Drosophila
The transcriptional coactivator and phosphatase eyes absent (Eya) is dynamically compartmentalized between the nucleus and cytoplasm. Although the nuclear transcriptional circuits within which Eya operates have been extensively characterized, understanding of its cytoplasmic functions and interactio...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2016-07, Vol.203 (3), p.1283-1295 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transcriptional coactivator and phosphatase eyes absent (Eya) is dynamically compartmentalized between the nucleus and cytoplasm. Although the nuclear transcriptional circuits within which Eya operates have been extensively characterized, understanding of its cytoplasmic functions and interactions remains limited. Our previous work showed that phosphorylation of Drosophila Eya by the Abelson tyrosine kinase can recruit Eya to the cytoplasm and that eya-abelson interactions are required for photoreceptor axons to project to correct layers in the brain. Based on these observations, we postulated that photoreceptor axon targeting might provide a suitable context for identifying the cytoplasmic signaling cascades with which Eya interacts. Using a dose-sensitive eya misexpression background, we performed an RNA interference-based genetic screen to identify suppressors. Included among the top 10 hits were nonreceptor tyrosine kinases and multiple members of the Jak/Stat signaling network (hop, Stat92E, Socs36E, and Socs44A), a pathway not previously implicated in axon targeting. Individual loss-of-function phenotypes combined with analysis of axonal projections in Stat92E null clones confirmed the importance of photoreceptor autonomous Jak/Stat signaling. Experiments in cultured cells detected cytoplasmic complexes between Eya and Hop, Socs36E and Socs44A; the latter interaction required both the Src homology 2 motif in Socs44A and tyrosine phosphorylated Eya, suggesting direct binding and validating the premise of the screen. Taken together, our data provide new insight into the cytoplasmic phosphotyrosine signaling networks that operate during photoreceptor axon guidance and suggest specific points of interaction with Eya. |
---|---|
ISSN: | 1943-2631 0016-6731 1943-2631 |
DOI: | 10.1534/genetics.115.185918 |