Navigation in bile acid chemical space: discovery of novel FXR and GPBAR1 ligands

Bile acids are signaling molecules interacting with nuclear receptors and membrane G-protein-coupled receptors. Among these receptors, the farnesoid X receptor (FXR) and the membrane G-coupled receptor (GPBAR1) have gained increasing consideration as druggable receptors and their exogenous dual regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-07, Vol.6 (1), p.29320-29320, Article 29320
Hauptverfasser: Finamore, Claudia, Festa, Carmen, Renga, Barbara, Sepe, Valentina, Carino, Adriana, Masullo, Dario, Biagioli, Michele, Marchianò, Silvia, Capolupo, Angela, Monti, Maria Chiara, Fiorucci, Stefano, Zampella, Angela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bile acids are signaling molecules interacting with nuclear receptors and membrane G-protein-coupled receptors. Among these receptors, the farnesoid X receptor (FXR) and the membrane G-coupled receptor (GPBAR1) have gained increasing consideration as druggable receptors and their exogenous dual regulation represents an attractive strategy in the treatment of enterohepatic and metabolic disorders. However, the therapeutic use of dual modulators could be associated to severe side effects and therefore the discovery of selective GPBAR1 and FXR agonists is an essential step in the medicinal chemistry optimization of bile acid scaffold. In this study, a new series of 6-ethylcholane derivatives modified on the tetracyclic core and on the side chain has been designed and synthesized and their in vitro activities on FXR and GPBAR1 were assayed. This speculation resulted in the identification of compound 7 as a potent and selective GPBAR1 agonist and of several derivatives showing potent dual agonistic activity.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep29320