Bipolar switching in chalcogenide phase change memory

Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-07, Vol.6 (1), p.29162-29162, Article 29162
Hauptverfasser: Ciocchini, N., Laudato, M., Boniardi, M., Varesi, E., Fantini, P., Lacaita, A. L., Ielmini, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the device resistance. Although phase transformation is extremely fast and repeatable, the amorphous phase suffers structural relaxation and crystallization at relatively low temperatures, which may affect the temperature stability of PCM state. To improve the time/temperature stability of the PCM, novel operation modes of the device should be identified. Here, we present bipolar switching operation of PCM, which is interpreted by ion migration in the solid state induced by elevated temperature and electric field similar to the bipolar switching in metal oxides. The temperature stability of the high resistance state is demonstrated and explained based on the local depletion of chemical species from the electrode region.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep29162