Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites

Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2016-06, Vol.2 (6), p.e1600477-e1600477
Hauptverfasser: Giovanni, David, Chong, Wee Kiang, Dewi, Herlina Arianita, Thirumal, Krishnamoorthy, Neogi, Ishita, Ramesh, Ramamoorthy, Mhaisalkar, Subodh, Mathews, Nripan, Sum, Tze Chien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.1600477