Segregating metabolic processes into different microbial cells accelerates the consumption of inhibitory substrates
Different microbial cell types typically specialize at performing different metabolic processes. A canonical example is substrate cross-feeding, where one cell type consumes a primary substrate into an intermediate and another cell type consumes the intermediate. While substrate cross-feeding is wid...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2016-07, Vol.10 (7), p.1568-1578 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Different microbial cell types typically specialize at performing different metabolic processes. A canonical example is substrate cross-feeding, where one cell type consumes a primary substrate into an intermediate and another cell type consumes the intermediate. While substrate cross-feeding is widely observed, its consequences on ecosystem processes is often unclear. How does substrate cross-feeding affect the rate or extent of substrate consumption? We hypothesized that substrate cross-feeding eliminates competition between different enzymes and reduces the accumulation of growth-inhibiting intermediates, thus accelerating substrate consumption. We tested this hypothesis using isogenic mutants of the bacterium
Pseudomonas stutzeri
that either completely consume nitrate to dinitrogen gas or cross-feed the intermediate nitrite. We demonstrate that nitrite cross-feeding eliminates inter-enzyme competition and, in turn, reduces nitrite accumulation. We further demonstrate that nitrite cross-feeding accelerates substrate consumption, but only when nitrite has growth-inhibiting effects. Knowledge about inter-enzyme competition and the inhibitory effects of intermediates could therefore be important for deciding how to best segregate different metabolic processes into different microbial cell types to optimize a desired biotransformation. |
---|---|
ISSN: | 1751-7362 1751-7370 |
DOI: | 10.1038/ismej.2015.243 |