Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation

•An automatic segmentation method is proposed for dynamic contrast enhanced MRI•We introduce perfusion-supervoxels to over-segment DCE-MRI volumes, and pieces-ofparts to add anatomical constraints to supervoxel segmentations•This method achieves promising results for the underexplored area of automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2016-08, Vol.32, p.69-83
Hauptverfasser: Irving, Benjamin, Franklin, James M., Papież, Bartłomiej W., Anderson, Ewan M., Sharma, Ricky A., Gleeson, Fergus V., Brady, Sir Michael, Schnabel, Julia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•An automatic segmentation method is proposed for dynamic contrast enhanced MRI•We introduce perfusion-supervoxels to over-segment DCE-MRI volumes, and pieces-ofparts to add anatomical constraints to supervoxel segmentations•This method achieves promising results for the underexplored area of automatic rectal tumour segmentation from DCE-MRI scans. [Display omitted] Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics – particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method’s generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems.
ISSN:1361-8415
1361-8423
DOI:10.1016/j.media.2016.03.002